121 research outputs found

    Automated Synthesis of Memristor Crossbar Networks

    Get PDF
    The advancement of semiconductor device technology over the past decades has enabled the design of increasingly complex electrical and computational machines. Electronic design automation (EDA) has played a significant role in the design and implementation of transistor-based machines. However, as transistors move closer toward their physical limits, the speed-up provided by Moore\u27s law will grind to a halt. Once again, we find ourselves on the verge of a paradigm shift in the computational sciences as newer devices pave the way for novel approaches to computing. One of such devices is the memristor -- a resistor with non-volatile memory. Memristors can be used as junctional switches in crossbar circuits, which comprise of intersecting sets of vertical and horizontal nanowires. The major contribution of this dissertation lies in automating the design of such crossbar circuits -- doing a new kind of EDA for a new kind of computational machinery. In general, this dissertation attempts to answer the following questions: a. How can we synthesize crossbars for computing large Boolean formulas, up to 128-bit? b. How can we synthesize more compact crossbars for small Boolean formulas, up to 8-bit? c. For a given loop-free C program doing integer arithmetic, is it possible to synthesize an equivalent crossbar circuit? We have presented novel solutions to each of the above problems. Our new, proposed solutions resolve a number of significant bottlenecks in existing research, via the usage of innovative logic representation and artificial intelligence techniques. For large Boolean formulas (up to 128-bit), we have utilized Reduced Ordered Binary Decision Diagrams (ROBDDs) to automatically synthesize linearly growing crossbar circuits that compute them. This cutting edge approach towards flow-based computing has yielded state-of-the-art results. It is worth noting that this approach is scalable to n-bit Boolean formulas. We have made significant original contributions by leveraging artificial intelligence for automatic synthesis of compact crossbar circuits. This inventive method has been expanded to encompass crossbar networks with 1D1M (1-diode-1-memristor) switches, as well. The resultant circuits satisfy the tight constraints of the Feynman Grand Prize challenge and are able to perform 8-bit binary addition. A leading edge development for end-to-end computation with flow-based crossbars has been implemented, which involves methodical translation of loop-free C programs into crossbar circuits via automated synthesis. The original contributions described in this dissertation reflect the substantial progress we have made in the area of electronic design automation for synthesis of memristor crossbar networks

    Memristor-Based Digital Systems Design and Architectures

    Get PDF
    Memristor is considered as a suitable alternative solution to resolve the scaling limitation of CMOS technology. In recent years, the use of memristors in circuits design has rapidly increased and attracted researcher’s interest. Advances have been made to both size and complexity of memristor designs. The development of CMOS transistors shows major concerns, such as, increased leakage power, reduced reliability, and high fabrication cost. These factors have affected chip manufacturing process and functionality severely. Therefore, the demand for new devices is increasing. Memristor, is considered as one of the key element in memory and information processing design due to its small size, long-term data storage, low power, and CMOS compatibility. The main objective in this research is to design memristor-based arithmetic circuits and to overcome some of the Memristor based logic design issues. In this thesis, a fast, low area and low power hybrid CMOS memristor based digital circuit design were implemented. Small and large-scale memristor based digital circuits are implemented and provided a solutions for overcoming the memristor degradation and fan-out challenges. As an example, a 4- bit LFSR has been implemented by using MRL scheme with 64 CMOS devices and 64 memristors. The proposed design is more efficient in terms of the area when compared with CMOS- based LFSR circuits. The simulation results proves the functionality of the design. This approach presents acceptable speed in comparison with CMOS-based design and it is faster than IMPLY-based memrisitive LFSR. The propped LFSR has 841 ps de-lay. Furthermore, the proposed design has a significant power reduction of over 66% less than CMOS-based approach. This thesis proposes implementation of memristive 2-D median filter and extends previously published works on memristive Filter design to include this emerging technology characteristics in image processing. The proposed circuit was designed based on Pt/TaOx/Ta redox-based device and Memristor Ratioed Logic (MRL). The proposed filter is designed in Cadence and the memristive median approved tested circuit is translated to Verilog-XL as a behavioral model. Different 512 _ 512 pixels input images contain salt and pepper noise with various noise density ratios are applied to the proposed median filter and the design successfully has substantially removed the noise. The implementation results in comparison with the conventional filters, it gives better Peak Signal to Noise Ratio (PSNR) and Mean Absolute Error (MAE) for different images with different noise density ratios while it saves more area as compared to CMOS-based design. This dissertation proposes a comprehensive framework for design, mapping and synthesis of large-scale memristor-CMOS circuits. This framework provides a synthesis approach that can be applied to all memristor-based digital logic designs. In particular, it is a proposal for a characterization methodology of memristor-based logic cells to generate a standard cell library for large scale simulation. The proposed framework is implemented in the Cadence Virtuoso schematic-level environment and was veri_ed with Verilog-XL, MATLAB, and the Electronic Design Automation (EDA) Synopses compiler after being translated to the behavioral level. The proposed method can be applied to implement any digital logic design. The frame work is deployed for design of the memristor-based parallel 8-bit adder/subtractor and a 2-D memristive-based median filter

    MemSPICE: Automated Simulation and Energy Estimation Framework for MAGIC-Based Logic-in-Memory

    Full text link
    Existing logic-in-memory (LiM) research is limited to generating mappings and micro-operations. In this paper, we present~\emph{MemSPICE}, a novel framework that addresses this gap by automatically generating both the netlist and testbench needed to evaluate the LiM on a memristive crossbar. MemSPICE goes beyond conventional approaches by providing energy estimation scripts to calculate the precise energy consumption of the testbench at the SPICE level. We propose an automated framework that utilizes the mapping obtained from the SIMPLER tool to perform accurate energy estimation through SPICE simulations. To the best of our knowledge, no existing framework is capable of generating a SPICE netlist from a hardware description language. By offering a comprehensive solution for SPICE-based netlist generation, testbench creation, and accurate energy estimation, MemSPICE empowers researchers and engineers working on memristor-based LiM to enhance their understanding and optimization of energy usage in these systems. Finally, we tested the circuits from the ISCAS'85 benchmark on MemSPICE and conducted a detailed energy analysis.Comment: Accepted in ASP-DAC 202

    Memristors for the Curious Outsiders

    Full text link
    We present both an overview and a perspective of recent experimental advances and proposed new approaches to performing computation using memristors. A memristor is a 2-terminal passive component with a dynamic resistance depending on an internal parameter. We provide an brief historical introduction, as well as an overview over the physical mechanism that lead to memristive behavior. This review is meant to guide nonpractitioners in the field of memristive circuits and their connection to machine learning and neural computation.Comment: Perpective paper for MDPI Technologies; 43 page

    Logic synthesis and defect tolerance for memristive crossbar arrays

    Get PDF
    This is a conference paper.Contrary to abundant memory related studies of memristive crossbar structures, logic oriented applications are only gaining popularity in recent years. In this paper, we study logic synthesis, regarding both two-level and multi level designs, and defect aspects of memristor based crossbar architectures. First, we introduce our two-level and multi-level logic synthesis techniques. We elaborate on advantages and disadvantages of both approaches with experimental results regarding area cost. After that, we devise a defect model in alignment with the conventional stuck-at open and closed paradigm. In addition, we determine the effects of defects to the operational capacity of the crossbar. Furthermore, we propose a preliminary defect tolerant Boolean logic mapping approach. In order to evaluate our approach, we conduct extensive Monte Carlo simulations with industrial benchmarks. Finally, we discuss future directions concerning both existing two-level and prospective multi-level logic designs as well as defect tolerance with area redundancy.This work is part of a project that has received funding from the European Union’s H2020 research and innovation programme under the Marie Skodowska-Curie grant agreement No 691178. This work is supported by the TUBITAK-Career project #113E760.Publishe

    Null Convention Logic applications of asynchronous design in nanotechnology and cryptographic security

    Get PDF
    This dissertation presents two Null Convention Logic (NCL) applications of asynchronous logic circuit design in nanotechnology and cryptographic security. The first application is the Asynchronous Nanowire Reconfigurable Crossbar Architecture (ANRCA); the second one is an asynchronous S-Box design for cryptographic system against Side-Channel Attacks (SCA). The following are the contributions of the first application: 1) Proposed a diode- and resistor-based ANRCA (DR-ANRCA). Three configurable logic block (CLB) structures were designed to efficiently reconfigure a given DR-PGMB as one of the 27 arbitrary NCL threshold gates. A hierarchical architecture was also proposed to implement the higher level logic that requires a large number of DR-PGMBs, such as multiple-bit NCL registers. 2) Proposed a memristor look-up-table based ANRCA (MLUT-ANRCA). An equivalent circuit simulation model has been presented in VHDL and simulated in Quartus II. Meanwhile, the comparison between these two ANRCAs have been analyzed numerically. 3) Presented the defect-tolerance and repair strategies for both DR-ANRCA and MLUT-ANRCA. The following are the contributions of the second application: 1) Designed an NCL based S-Box for Advanced Encryption Standard (AES). Functional verification has been done using Modelsim and Field-Programmable Gate Array (FPGA). 2) Implemented two different power analysis attacks on both NCL S-Box and conventional synchronous S-Box. 3) Developed a novel approach based on stochastic logics to enhance the resistance against DPA and CPA attacks. The functionality of the proposed design has been verified using an 8-bit AES S-box design. The effects of decision weight, bitstream length, and input repetition times on error rates have been also studied. Experimental results shows that the proposed approach enhances the resistance to against the CPA attack by successfully protecting the hidden key --Abstract, page iii

    In-Memory Computing Using Formal Methods and Paths-Based Logic

    Get PDF
    The continued scaling of the CMOS device has been largely responsible for the increase in computational power and consequent technological progress over the last few decades. However, the end of Dennard scaling has interrupted this era of sustained exponential growth in computing performance. Indeed, we are quickly reaching an impasse in the form of limitations in the lithographic processes used to fabricate CMOS processes and, even more dire, we are beginning to face fundamental physical phenomena, such as quantum tunneling, that are pervasive at the nanometer scale. Such phenomena manifests itself in prohibitively high leakage currents and process variations, leading to inaccurate computations. As a result, there has been a surge of interest in computing architectures that can replace the traditional CMOS transistor-based methods. This thesis is a thorough investigation of how computations can be performed on one such architecture, called a crossbar. The methods proposed in this document apply to any crossbar consisting of two-terminal connective devices. First, we demonstrate how paths of electric current between two wires can be used as design primitives in a crossbar. We then leverage principles from the field of formal methods, in particular the area of bounded model checking, to automate the synthesis of crossbar designs for computing arithmetic operations. We demonstrate that our approach yields circuits that are state-of-the-art in terms of the number of operations required to perform a computation. Finally, we look at the benefits of using a 3D crossbar for computation; that is, a crossbar consisting of multiple layers of interconnects. A novel 3D crossbar computing paradigm is proposed for solving the Boolean matrix multiplication and transitive closure problems and we show how this paradigm can be utilized, with small modifications, in the XPoint crossbar memory architecture that was recently announced by Intel

    Logic synthesis and testing techniques for switching nano-crossbar arrays

    Get PDF
    Beyond CMOS, new technologies are emerging to extend electronic systems with features unavailable to silicon-based devices. Emerging technologies provide new logic and interconnection structures for computation, storage and communication that may require new design paradigms, and therefore trigger the development of a new generation of design automation tools. In the last decade, several emerging technologies have been proposed and the time has come for studying new ad-hoc techniques and tools for logic synthesis, physical design and testing. The main goal of this project is developing a complete synthesis and optimization methodology for switching nano-crossbar arrays that leads to the design and construction of an emerging nanocomputer. New models for diode, FET, and four-terminal switch based nanoarrays are developed. The proposed methodology implements logic, arithmetic, and memory elements by considering performance parameters such as area, delay, power dissipation, and reliability. With combination of logic, arithmetic, and memory elements a synchronous state machine (SSM), representation of a computer, is realized. The proposed methodology targets variety of emerging technologies including nanowire/nanotube crossbar arrays, magnetic switch-based structures, and crossbar memories. The results of this project will be a foundation of nano-crossbar based circuit design techniques and greatly contribute to the construction of emerging computers beyond CMOS. The topic of this project can be considered under the research area of â\u80\u9cEmerging Computing Modelsâ\u80\u9d or â\u80\u9cComputational Nanoelectronicsâ\u80\u9d, more specifically the design, modeling, and simulation of new nanoscale switches beyond CMOS
    corecore