129 research outputs found

    A MapReduce Based Distributed LSI for Scalable Information Retrieval

    Get PDF
    Latent Semantic Indexing (LSI) has been widely used in information retrieval due to its efficiency in solving the problems of polysemy and synonymy. However, LSI is notably a computationally intensive process because of the computing complexities of singular value decomposition and filtering operations involved in the process. This paper presents MR-LSI, a MapReduce based distributed LSI algorithm for scalable information retrieval. The performance of MR-LSI is first evaluated in a small scale experimental cluster environment, and subsequently evaluated in large scale simulation environments. By partitioning the dataset into smaller subsets and optimizing the partitioned subsets across a cluster of computing nodes, the overhead of the MR-LSI algorithm is reduced significantly while maintaining a high level of accuracy in retrieving documents of user interest. A genetic algorithm based load balancing scheme is designed to optimize the performance of MR-LSI in heterogeneous computing environments in which the computing nodes have varied resources

    A resource aware distributed LSI algorithm for scalable information retrieval

    Get PDF
    Latent Semantic Indexing (LSI) is one of the popular techniques in the information retrieval fields. Different from the traditional information retrieval techniques, LSI is not based on the keyword matching simply. It uses statistics and algebraic computations. Based on Singular Value Decomposition (SVD), the higher dimensional matrix is converted to a lower dimensional approximate matrix, of which the noises could be filtered. And also the issues of synonymy and polysemy in the traditional techniques can be overcome based on the investigations of the terms related with the documents. However, it is notable that LSI suffers a scalability issue due to the computing complexity of SVD. This thesis presents a resource aware distributed LSI algorithm MR-LSI which can solve the scalability issue using Hadoop framework based on the distributed computing model MapReduce. It also solves the overhead issue caused by the involved clustering algorithm. The evaluations indicate that MR-LSI can gain significant enhancement compared to the other strategies on processing large scale of documents. One remarkable advantage of Hadoop is that it supports heterogeneous computing environments so that the issue of unbalanced load among nodes is highlighted. Therefore, a load balancing algorithm based on genetic algorithm for balancing load in static environment is proposed. The results show that it can improve the performance of a cluster according to heterogeneity levels. Considering dynamic Hadoop environments, a dynamic load balancing strategy with varying window size has been proposed. The algorithm works depending on data selecting decision and modeling Hadoop parameters and working mechanisms. Employing improved genetic algorithm for achieving optimized scheduler, the algorithm enhances the performance of a cluster with certain heterogeneity levels.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    A survey on big data indexing strategies

    Get PDF
    The operations of the Internet have led to a significant growth and accumulation of data known as Big Data.Individuals and organizations that utilize this data, had no idea, nor were they prepared for this data explosion.Hence, the available solutions cannot meet the needs of the growing heterogeneous data in terms of processing. This results in inefficient information retrieval or search query results.The design of indexing strategies that can support this need is required. A survey on various indexing strategies and how they are utilized for solving Big Data management issues can serve as a guide for choosing the strategy best suited for a problem, and can also serve as a base for the design of more efficient indexing strategies.The aim of the study is to explore the characteristics of the indexing strategies used in Big Data manageability by covering some of the weaknesses and strengths of B-tree, R-tree, to name but a few. This paper covers some popular indexing strategies used for Big Data management. It exposes the potentials of each by carefully exploring their properties in ways that are related to problem solving

    A Resource Aware MapReduce Based Parallel SVM for Large Scale Image Classifications

    Get PDF
    Machine learning techniques have facilitated image retrieval by automatically classifying and annotating images with keywords. Among them support vector machines (SVMs) are used extensively due to their generalization properties. However, SVM training is notably a computationally intensive process especially when the training dataset is large. This paper presents RASMO, a resource aware MapReduce based parallel SVM algorithm for large scale image classifications which partitions the training data set into smaller subsets and optimizes SVM training in parallel using a cluster of computers. A genetic algorithm based load balancing scheme is designed to optimize the performance of RASMO in heterogeneous computing environments. RASMO is evaluated in both experimental and simulation environments. The results show that the parallel SVM algorithm reduces the training time significantly compared with the sequential SMO algorithm while maintaining a high level of accuracy in classifications.National Basic Research Program (973) of China under Grant 2014CB34040

    A scalable recommender system : using latent topics and alternating least squares techniques

    Get PDF
    Dissertation presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced AnalyticsA recommender system is one of the major techniques that handles information overload problem of Information Retrieval. Improves access and proactively recommends relevant information to each user, based on preferences and objectives. During the implementation and planning phases, designers have to cope with several issues and challenges that need proper attention. This thesis aims to show the issues and challenges in developing high-quality recommender systems. A paper solves a current research problem in the field of job recommendations using a distributed algorithmic framework built on top of Spark for parallel computation which allows the algorithm to scale linearly with the growing number of users. The final solution consists of two different recommenders which could be utilised for different purposes. The first method is mainly driven by latent topics among users, meanwhile the second technique utilises a latent factor algorithm that directly addresses the preference-confidence paradigm
    corecore