26,679 research outputs found

    Non-Abelian Holonomy of BCS and SDW Quasi-particles

    Full text link
    In this work we investigate properties of fermions in the SO(5) theory of high Tc superconductivity. We show that the adiabatic time evolution of a SO(5) superspin vector leads to a non-Abelian SU(2) holonomy of the SO(5) spinor states. Physically, this non-trivial holonomy arises from the non-zero overlap between the SDW and BCS quasi-particle states. While the usual Berry's phase of a SO(3) spinor is described by a Dirac magnetic monopole at the degeneracy point, the non-Abelian holonomy of a SO(5) spinor is described by a Yang monopole at the degeneracy point, and is deeply related to the existence of the second Hopf map from S7S^7 to S4S^4. We conclude this work by extending the bosonic SO(5) nonlinear sigma model to include the fermionic states around the gap nodes as 4 component Dirac fermions coupled to SU(2) gauge fields in 2+1 dimensions.Comment: 45 pages, 5 figures, typos corrected, references adde

    Hopf algebras and finite tensor categories in conformal field theory

    Full text link
    In conformal field theory the understanding of correlation functions can be divided into two distinct conceptual levels: The analytic properties of the correlators endow the representation categories of the underlying chiral symmetry algebras with additional structure, which in suitable cases is the one of a finite tensor category. The problem of specifying the correlators can then be encoded in algebraic structure internal to those categories. After reviewing results for conformal field theories for which these representation categories are semisimple, we explain what is known about representation categories of chiral symmetry algebras that are not semisimple. We focus on generalizations of the Verlinde formula, for which certain finite-dimensional complex Hopf algebras are used as a tool, and on the structural importance of the presence of a Hopf algebra internal to finite tensor categories.Comment: 46 pages, several figures. v2: missing text added after (4.5), references added, and a few minor changes. v3: typos corrected, bibliography update

    Classical mappings of the symplectic model and their application to the theory of large-amplitude collective motion

    Full text link
    We study the algebra Sp(n,R) of the symplectic model, in particular for the cases n=1,2,3, in a new way. Starting from the Poisson-bracket realization we derive a set of partial differential equations for the generators as functions of classical canonical variables. We obtain a solution to these equations that represents the classical limit of a boson mapping of the algebra. The relationship to the collective dynamics is formulated as a theorem that associates the mapping with an exact solution of the time-dependent Hartree approximation. This solution determines a decoupled classical symplectic manifold, thus satisfying the criteria that define an exactly solvable model in the theory of large amplitude collective motion. The models thus obtained also provide a test of methods for constructing an approximately decoupled manifold in fully realistic cases. We show that an algorithm developed in one of our earlier works reproduces the main results of the theorem.Comment: 23 pages, LaTeX using REVTeX 3.

    Dynamical Properties of the Mukhanov-Sasaki Hamiltonian in the context of adiabatic vacua and the Lewis-Riesenfeld invariant

    Full text link
    We use the method of the Lewis-Riesenfeld invariant to analyze the dynamical properties of the Mukhanov-Sasaki Hamiltonian and, following this approach, investigate whether we can obtain possible candidates for initial states in the context of inflation considering a quasi-de Sitter spacetime. Our main interest lies in the question to which extent these already well-established methods at the classical and quantum level for finitely many degrees of freedom can be generalized to field theory. As our results show, a straightforward generalization does in general not lead to a unitary operator on Fock space that implements the corresponding time-dependent canonical transformation associated with the Lewis-Riesenfeld invariant. The action of this operator can be rewritten as a time-dependent Bogoliubov transformation and we show that its generalization to Fock space has to be chosen appropriately in order that the Shale-Stinespring condition is not violated, where we also compare our results to already existing ones in the literature. Furthermore, our analysis relates the Ermakov differential equation that plays the role of an auxiliary equation, whose solution is necessary to construct the Lewis-Riesenfeld invariant, as well as the corresponding time-dependent canonical transformation to the defining differential equation for adiabatic vacua. Therefore, a given solution of the Ermakov equation directly yields a full solution to the differential equation for adiabatic vacua involving no truncation at some adiabatic order. As a consequence, we can interpret our result obtained here as a kind of non-squeezed Bunch-Davies mode, where the term non-squeezed refers to a possible residual squeezing that can be involved in the unitary operator for certain choices of the Bogoliubov map.Comment: 40 pages, 5 figures, minor changes: slightly rewrote the introduction, extended the discussion on the infrared modes, corrected typos and added reference

    Function spaces and classifying spaces of algebras over a prop

    Full text link
    The goal of this paper is to prove that the classifying spaces of categories of algebras governed by a prop can be determined by using function spaces on the category of props. We first consider a function space of props to define the moduli space of algebra structures over this prop on an object of the base category. Then we mainly prove that this moduli space is the homotopy fiber of a forgetful map of classifying spaces, generalizing to the prop setting a theorem of Rezk. The crux of our proof lies in the construction of certain universal diagrams in categories of algebras over a prop. We introduce a general method to carry out such constructions in a functorial way.Comment: 28 pages, modifications mainly in section 2 (more details in some proofs and additional explanations), typo corrections. Final version, to appear in Algebr. Geom. Topo

    Algebraic Approach to Interacting Quantum Systems

    Full text link
    We present an algebraic framework for interacting extended quantum systems to study complex phenomena characterized by the coexistence and competition of different states of matter. We start by showing how to connect different (spin-particle-gauge) {\it languages} by means of exact mappings (isomorphisms) that we name {\it dictionaries} and prove a fundamental theorem establishing when two arbitrary languages can be connected. These mappings serve to unravel symmetries which are hidden in one representation but become manifest in another. In addition, we establish a formal link between seemingly unrelated physical phenomena by changing the language of our model description. This link leads to the idea of {\it universality} or equivalence. Moreover, we introduce the novel concept of {\it emergent symmetry} as another symmetry guiding principle. By introducing the notion of {\it hierarchical languages}, we determine the quantum phase diagram of lattice models (previously unsolved) and unveil hidden order parameters to explore new states of matter. Hierarchical languages also constitute an essential tool to provide a unified description of phases which compete and coexist. Overall, our framework provides a simple and systematic methodology to predict and discover new kinds of orders. Another aspect exploited by the present formalism is the relation between condensed matter and lattice gauge theories through quantum link models. We conclude discussing applications of these dictionaries to the area of quantum information and computation with emphasis in building new models of computation and quantum programming languages.Comment: 44 pages, 14 psfigures. Advances in Physics 53, 1 (2004
    corecore