398 research outputs found

    Language Design for Reactive Systems: On Modal Models, Time, and Object Orientation in Lingua Franca and SCCharts

    Get PDF
    Reactive systems play a crucial role in the embedded domain. They continuously interact with their environment, handle concurrent operations, and are commonly expected to provide deterministic behavior to enable application in safety-critical systems. In this context, language design is a key aspect, since carefully tailored language constructs can aid in addressing the challenges faced in this domain, as illustrated by the various concurrency models that prevent the known pitfalls of regular threads. Today, many languages exist in this domain and often provide unique characteristics that make them specifically fit for certain use cases. This thesis evolves around two distinctive languages: the actor-oriented polyglot coordination language Lingua Franca and the synchronous statecharts dialect SCCharts. While they take different approaches in providing reactive modeling capabilities, they share clear similarities in their semantics and complement each other in design principles. This thesis analyzes and compares key design aspects in the context of these two languages. For three particularly relevant concepts, it provides and evaluates lean and seamless language extensions that are carefully aligned with the fundamental principles of the underlying language. Specifically, Lingua Franca is extended toward coordinating modal behavior, while SCCharts receives a timed automaton notation with an efficient execution model using dynamic ticks and an extension toward the object-oriented modeling paradigm

    Computer Aided Verification

    Get PDF
    This open access two-volume set LNCS 10980 and 10981 constitutes the refereed proceedings of the 30th International Conference on Computer Aided Verification, CAV 2018, held in Oxford, UK, in July 2018. The 52 full and 13 tool papers presented together with 3 invited papers and 2 tutorials were carefully reviewed and selected from 215 submissions. The papers cover a wide range of topics and techniques, from algorithmic and logical foundations of verification to practical applications in distributed, networked, cyber-physical, and autonomous systems. They are organized in topical sections on model checking, program analysis using polyhedra, synthesis, learning, runtime verification, hybrid and timed systems, tools, probabilistic systems, static analysis, theory and security, SAT, SMT and decisions procedures, concurrency, and CPS, hardware, industrial applications

    Dynamic contracts for verification and enforcement of real-time systems properties

    Get PDF
    Programa de Doutoramento em Informática (MAP-i) das Universidades do Minho, de Aveiro e do PortoRuntime veri cation is an emerging discipline that investigates methods and tools to enable the veri cation of program properties during the execution of the application. The goal is to complement static analysis approaches, in particular when static veri cation leads to the explosion of states. Non-functional properties, such as the ones present in real-time systems are an ideal target for this kind of veri cation methodology, as are usually out of the range of the power and expressiveness of classic static analyses. Current real-time embedded systems development frameworks lack support for the veri - cation of properties using explicit time where counting time (i.e., durations) may play an important role in the development process. Temporal logics targeting real-time systems are traditionally undecidable. Based on a restricted fragment of Metric temporal logic with durations (MTL-R), we present the proposed synthesis mechanisms 1) for target systems as runtime monitors and 2) for SMT solvers as a way to get, respectively, a verdict at runtime and a schedulability problem to be solved before execution. The later is able to solve partially the schedulability analysis for periodic resource models and xed priority scheduler algorithms. A domain speci c language is also proposed in order to describe such schedulability analysis problems in a more high level way. Finally, we validate both approaches, the rst using empirical scheduling scenarios for unimulti- processor settings, and the second using the use case of the lightweight autopilot system Px4/Ardupilot widely used for industrial and entertainment purposes. The former also shows that certain classes of real-time scheduling problems can be solved, even though without scaling well. The later shows that for the cases where the former cannot be used, the proposed synthesis technique for monitors is well applicable in a real world scenario such as an embedded autopilot ight stack.A verificação do tempo de execução e uma disciplina emergente que investiga métodos e ferramentas para permitir a verificação de propriedades do programa durante a execução da aplicação. O objetivo é complementar abordagens de analise estática, em particular quando a verificação estática se traduz em explosão de estados. As propriedades não funcionais, como as que estão presentes em sistemas em tempo real, são um alvo ideal para este tipo de metodologia de verificação, como geralmente estão fora do alcance do poder e expressividade das análises estáticas clássicas. As atuais estruturas de desenvolvimento de sistemas embebidos para tempo real não possuem suporte para a verificação de propriedades usando o tempo explicito onde a contagem de tempo (ou seja, durações) pode desempenhar um papel importante no processo de desenvolvimento. As logicas temporais que visam sistemas de tempo real são tradicionalmente indecidíveis. Com base num fragmento restrito de MTL-R (metric temporal logic with durations), apresentaremos os mecanismos de síntese 1) para sistemas alvo como monitores de tempo de execução e 2) para solvers SMT como forma de obter, respetivamente, um veredicto em tempo de execução e um problema de escalonamento para ser resolvido antes da execução. O ultimo é capaz de resolver parcialmente a analise de escalonamento para modelos de recursos periódicos e ainda para algoritmos de escalonamento de prioridade fixa. Propomos também uma linguagem especifica de domínio para descrever esses mesmos problemas de analise de escalonamento de forma mais geral e sucinta. Finalmente, validamos ambas as abordagens, a primeira usando cenários de escalonamento empírico para sistemas uni- multi-processador e a segunda usando o caso de uso do sistema de piloto automático leve Px4/Ardupilot amplamente utilizado para fins industriais e de entretenimento. O primeiro mostra que certas classes de problemas de escalonamento em tempo real podem ser solucionadas, embora não seja escalável. O ultimo mostra que, para os casos em que a primeira opção não possa ser usada, a técnica de síntese proposta para monitores aplica-se num cenário real, como uma pilha de voo de um piloto automático embebido.This thesis was partially supported by National Funds through FCT/MEC (Portuguese Foundation for Science and Technology) and co- nanced by ERDF (European Regional Development Fund) under the PT2020 Partnership, within the CISTER Research Unit (CEC/04234); FCOMP-01-0124-FEDER-015006 (VIPCORE) and FCOMP-01-0124-FEDER- 020486 (AVIACC); also by FCT and EU ARTEMIS JU, within project ARTEMIS/0003/2012, JU grant nr. 333053 (CONCERTO); and by FCT/MEC and the EU ARTEMIS JU within project ARTEMIS/0001/2013 - JU grant nr. 621429 (EMC2)

    A Novel WCET semantics of Synchronous Programs

    Get PDF

    An executable Theory of Multi-Agent Systems Refinement

    Get PDF
    Complex applications such as incident management, social simulations, manufacturing applications, electronic auctions, e-institutions, and business to business applications are pervasive and important nowadays. Agent-oriented methodology is an advance in abstractionwhich can be used by software developers to naturally model and develop systems for suchapplications. In general, with respect to design methodologies, what it may be important tostress is that control structures should be added at later stages of design, in a natural top-downmanner going from specifications to implementations, by refinement. Too much detail (be itfor the sake of efficiency) in specifications often turns out to be harmful. To paraphrase D.E.Knuth, “Premature optimization is the root of all evil” (quoted in ‘The Unix ProgrammingEnvironment’ by Kernighan and Pine, p. 91).The aim of this thesis is to adapt formal techniques to the agent-oriented methodologyinto an executable theory of refinement. The justification for doing so is to provide correctagent-based software by design. The underlying logical framework of the theory we proposeis based on rewriting logic, thus the theory is executable in the same sense as rewriting logicis. The storyline is as follows. We first motivate and explain constituting elements of agentlanguages chosen to represent both abstract and concrete levels of design. We then proposea definition of refinement between agents written in such languages. This notion of refinement ensures that concrete agents are correct with respect to the abstract ones. The advantageof the definition is that it easily leads to formulating a proof technique for refinement viathe classical notion of simulation. This makes it possible to effectively verify refinement bymodel-checking. Additionally, we propose a weakest precondition calculus as a deductivemethod based on assertions which allow to prove correctness of infinite state agents. Wegeneralise the refinement relation from single agents to multi-agent systems in order to ensure that concrete multi-agent systems refine their abstractions. We see multi-agent systemsas collections of coordinated agents, and we consider coordination artefacts as being basedeither on actions or on normative rules. We integrate these two orthogonal coordinationmechanisms within the same refinement theory extended to a timed framework. Finally, wediscuss implementation aspects.LEI Universiteit LeidenFoundations of Software Technolog

    The embedded systems design challenge

    Get PDF
    We summarize some current trends in embedded systems design and point out some of their characteristics, such as the chasm between analytical and computational models, and the gap between safety-critical and best-effort engineering practices. We call for a coherent scientific foundation for embedded systems design, and we discuss a few key demands on such a foundation: the need for encompassing several manifestations of heterogeneity, and the need for constructivity in design. We believe that the development of a satisfactory embedded systems design science provides a timely challenge and opportunity for reinvigorating computer scienc

    Reversible Computation: Extending Horizons of Computing

    Get PDF
    This open access State-of-the-Art Survey presents the main recent scientific outcomes in the area of reversible computation, focusing on those that have emerged during COST Action IC1405 "Reversible Computation - Extending Horizons of Computing", a European research network that operated from May 2015 to April 2019. Reversible computation is a new paradigm that extends the traditional forwards-only mode of computation with the ability to execute in reverse, so that computation can run backwards as easily and naturally as forwards. It aims to deliver novel computing devices and software, and to enhance existing systems by equipping them with reversibility. There are many potential applications of reversible computation, including languages and software tools for reliable and recovery-oriented distributed systems and revolutionary reversible logic gates and circuits, but they can only be realized and have lasting effect if conceptual and firm theoretical foundations are established first
    corecore