99 research outputs found

    Parallel evaluation of Pittsburgh rule-based classifiers on GPUs

    Get PDF
    Individuals from Pittsburgh rule-based classifiers represent a complete solution to the classification problem and each individual is a variable-length set of rules. Therefore, these systems usually demand a high level of computational resources and run-time, which increases as the complexity and the size of the data sets. It is known that this computational cost is mainly due to the recurring evaluation process of the rules and the individuals as rule sets. In this paper we propose a parallel evaluation model of rules and rule sets on GPUs based on the NVIDIA CUDA programming model which significantly allows reducing the run-time and speeding up the algorithm. The results obtained from the experimental study support the great efficiency and high performance of the GPU model, which is scalable to multiple GPU devices. The GPU model achieves a rule interpreter performance of up to 64 billion operations per second and the evaluation of the individuals is speeded up of up to 3.461× when compared to the CPU model. This provides a significant advantage of the GPU model, especially addressing large and complex problems within reasonable time, where the CPU run-time is not acceptabl

    Speeding up Multiple Instance Learning Classification Rules on GPUs

    Get PDF
    Multiple instance learning is a challenging task in supervised learning and data mining. How- ever, algorithm performance becomes slow when learning from large-scale and high-dimensional data sets. Graphics processing units (GPUs) are being used for reducing computing time of algorithms. This paper presents an implementation of the G3P-MI algorithm on GPUs for solving multiple instance problems using classification rules. The GPU model proposed is distributable to multiple GPUs, seeking for its scal- ability across large-scale and high-dimensional data sets. The proposal is compared to the multi-threaded CPU algorithm with SSE parallelism over a series of data sets. Experimental results report that the com- putation time can be significantly reduced and its scalability improved. Specifically, an speedup of up to 149× can be achieved over the multi-threaded CPU algorithm when using four GPUs, and the rules interpreter achieves great efficiency and runs over 108 billion Genetic Programming operations per second

    Minería de Reglas de Asociación en GPU

    Get PDF
    Premio extraordinario de Trabajo Fin de Máster curso 2012-2013.Sistemas Inteligentes

    Mixing multi-core CPUs and GPUs for scientific simulation software

    Get PDF
    Recent technological and economic developments have led to widespread availability of multi-core CPUs and specialist accelerator processors such as graphical processing units (GPUs). The accelerated computational performance possible from these devices can be very high for some applications paradigms. Software languages and systems such as NVIDIA's CUDA and Khronos consortium's open compute language (OpenCL) support a number of individual parallel application programming paradigms. To scale up the performance of some complex systems simulations, a hybrid of multi-core CPUs for coarse-grained parallelism and very many core GPUs for data parallelism is necessary. We describe our use of hybrid applica- tions using threading approaches and multi-core CPUs to control independent GPU devices. We present speed-up data and discuss multi-threading software issues for the applications level programmer and o er some suggested areas for language development and integration between coarse-grained and ne-grained multi-thread systems. We discuss results from three common simulation algorithmic areas including: partial di erential equations; graph cluster metric calculations and random number generation. We report on programming experiences and selected performance for these algorithms on: single and multiple GPUs; multi-core CPUs; a CellBE; and using OpenCL. We discuss programmer usability issues and the outlook and trends in multi-core programming for scienti c applications developers

    A new parallelisation technique for heterogeneous CPUs

    Get PDF
    Parallelization has moved in recent years into the mainstream compilers, and the demand for parallelizing tools that can do a better job of automatic parallelization is higher than ever. During the last decade considerable attention has been focused on developing programming tools that support both explicit and implicit parallelism to keep up with the power of the new multiple core technology. Yet the success to develop automatic parallelising compilers has been limited mainly due to the complexity of the analytic process required to exploit available parallelism and manage other parallelisation measures such as data partitioning, alignment and synchronization. This dissertation investigates developing a programming tool that automatically parallelises large data structures on a heterogeneous architecture and whether a high-level programming language compiler can use this tool to exploit implicit parallelism and make use of the performance potential of the modern multicore technology. The work involved the development of a fully automatic parallelisation tool, called VSM, that completely hides the underlying details of general purpose heterogeneous architectures. The VSM implementation provides direct and simple access for users to parallelise array operations on the Cell’s accelerators without the need for any annotations or process directives. This work also involved the extension of the Glasgow Vector Pascal compiler to work with the VSM implementation as a one compiler system. The developed compiler system, which is called VP-Cell, takes a single source code and parallelises array expressions automatically. Several experiments were conducted using Vector Pascal benchmarks to show the validity of the VSM approach. The VP-Cell system achieved significant runtime performance on one accelerator as compared to the master processor’s performance and near-linear speedups over code runs on the Cell’s accelerators. Though VSM was mainly designed for developing parallelising compilers it also showed a considerable performance by running C code over the Cell’s accelerators

    Genetic improvement of GPU software

    Get PDF
    We survey genetic improvement (GI) of general purpose computing on graphics cards. We summarise several experiments which demonstrate four themes. Experiments with the gzip program show that genetic programming can automatically port sequential C code to parallel code. Experiments with the StereoCamera program show that GI can upgrade legacy parallel code for new hardware and software. Experiments with NiftyReg and BarraCUDA show that GI can make substantial improvements to current parallel CUDA applications. Finally, experiments with the pknotsRG program show that with semi-automated approaches, enormous speed ups can sometimes be had by growing and grafting new code with genetic programming in combination with human input
    corecore