513 research outputs found

    Objective Classes for Micro-Facial Expression Recognition

    Full text link
    Micro-expressions are brief spontaneous facial expressions that appear on a face when a person conceals an emotion, making them different to normal facial expressions in subtlety and duration. Currently, emotion classes within the CASME II dataset are based on Action Units and self-reports, creating conflicts during machine learning training. We will show that classifying expressions using Action Units, instead of predicted emotion, removes the potential bias of human reporting. The proposed classes are tested using LBP-TOP, HOOF and HOG 3D feature descriptors. The experiments are evaluated on two benchmark FACS coded datasets: CASME II and SAMM. The best result achieves 86.35\% accuracy when classifying the proposed 5 classes on CASME II using HOG 3D, outperforming the result of the state-of-the-art 5-class emotional-based classification in CASME II. Results indicate that classification based on Action Units provides an objective method to improve micro-expression recognition.Comment: 11 pages, 4 figures and 5 tables. This paper will be submitted for journal revie

    Less is More: Micro-expression Recognition from Video using Apex Frame

    Full text link
    Despite recent interest and advances in facial micro-expression research, there is still plenty room for improvement in terms of micro-expression recognition. Conventional feature extraction approaches for micro-expression video consider either the whole video sequence or a part of it, for representation. However, with the high-speed video capture of micro-expressions (100-200 fps), are all frames necessary to provide a sufficiently meaningful representation? Is the luxury of data a bane to accurate recognition? A novel proposition is presented in this paper, whereby we utilize only two images per video: the apex frame and the onset frame. The apex frame of a video contains the highest intensity of expression changes among all frames, while the onset is the perfect choice of a reference frame with neutral expression. A new feature extractor, Bi-Weighted Oriented Optical Flow (Bi-WOOF) is proposed to encode essential expressiveness of the apex frame. We evaluated the proposed method on five micro-expression databases: CAS(ME)2^2, CASME II, SMIC-HS, SMIC-NIR and SMIC-VIS. Our experiments lend credence to our hypothesis, with our proposed technique achieving a state-of-the-art F1-score recognition performance of 61% and 62% in the high frame rate CASME II and SMIC-HS databases respectively.Comment: 14 pages double-column, author affiliations updated, acknowledgment of grant support adde

    LEARNet Dynamic Imaging Network for Micro Expression Recognition

    Full text link
    Unlike prevalent facial expressions, micro expressions have subtle, involuntary muscle movements which are short-lived in nature. These minute muscle movements reflect true emotions of a person. Due to the short duration and low intensity, these micro-expressions are very difficult to perceive and interpret correctly. In this paper, we propose the dynamic representation of micro-expressions to preserve facial movement information of a video in a single frame. We also propose a Lateral Accretive Hybrid Network (LEARNet) to capture micro-level features of an expression in the facial region. The LEARNet refines the salient expression features in accretive manner by incorporating accretion layers (AL) in the network. The response of the AL holds the hybrid feature maps generated by prior laterally connected convolution layers. Moreover, LEARNet architecture incorporates the cross decoupled relationship between convolution layers which helps in preserving the tiny but influential facial muscle change information. The visual responses of the proposed LEARNet depict the effectiveness of the system by preserving both high- and micro-level edge features of facial expression. The effectiveness of the proposed LEARNet is evaluated on four benchmark datasets: CASME-I, CASME-II, CAS(ME)^2 and SMIC. The experimental results after investigation show a significant improvement of 4.03%, 1.90%, 1.79% and 2.82% as compared with ResNet on CASME-I, CASME-II, CAS(ME)^2 and SMIC datasets respectively.Comment: Dynamic imaging, accretion, lateral, micro expression recognitio

    Micro Expression Spotting through Appearance Based Descriptor and Distance Analysis

    Get PDF
    Micro-Expressions (MEs) are a typical kind of expressions which are subtle and short lived in nature and reveal the hidden emotion of human beings. Due to processing an entire video, the MEs recognition constitutes huge computational burden and also consumes more time. Hence, MEs spotting is required which locates the exact frames at which the movement of ME persists. Spotting is regarded as a primary step for MEs recognition. This paper proposes a new method for ME spotting which comprises three stages; pre-processing, feature extraction and discrimination. Pre-processing aligns the facial region in every frame based on three landmark points derived from three landmark regions. To do alignment, an in-plane rotation matrix is used which rotates the non-aligned coordinates into aligned coordinates. For feature extraction, two texture based descriptors are deployed; they are Local Binary Pattern (LBP) and Local Mean Binary Pattern (LMBP). Finally at discrimination stage, Feature Difference Analysis is employed through Chi-Squared Distance (CSD) and the distance of each frame is compared with a threshold to spot there frames namely Onset, Apex and Offset. Simulation done over a Standard CASME dataset and performance is verified through Feature Difference and F1-Score. The obtained results prove that the proposed method is superior than the state-of-the-art methods
    • …
    corecore