263 research outputs found

    Dual Purpose Tunable Vibration Isolator Energy Harvester: Design, Fabrication, Modeling and Characterization

    Get PDF
    This dissertation is focused on design, fabrication, characterization, and modeling of a unique dual purpose vibration isolation energy harvesting system. The purpose of the system is to, simultaneously, attenuate unwanted vibrations and scavenge kinetic energy available in these vibrations. This study includes theoretical modeling and experimental work to fully characterize and understand the dynamic behavior of the fabricated dual purpose system. In the theoretical study, both numerical (Runge-Kutta) and analytical (Harmonic Balance Method, HBM) methods are used to obtain the dynamic behavior of the system. The system features a combination of mechanical and electromagnetic components to facilitate its dual functionality. The system consists of a magnetic spring, mechanical flat spring, and dampers. The combination of negative stiffness of the magnetic spring with positive stiffness of the mechanical spring results in lowering the cut off frequency of the system. Lowering the cut off frequency improves the device’s ability to operate in a wider range of frequencies. Results from dynamic measurements and model simulation confirm the ability of the device to function in both vibration isolation and energy harvesting modes simultaneously. The dual-purpose device is able to attenuate vibrations higher than 12.5 [Hz]. The device also produces 26.8 [mW] output power at 1g [m/s2] and 9.75 [Hz]. Performance metrics of the device including displacement transmissibility and energy conversion efficiency are formulated. Results show that for low acceleration levels, lower damping values are desirable and yield higher energy conversion efficiencies and improved vibration isolation. At higher acceleration, there is a trade-off where lower damping values worsen vibration isolation but yield higher conversion efficiencies

    Development of a 6-degree-of-freedom magnetically levitated instrument with nanometer precision

    Get PDF
    This thesis presents the design and fabrication of a novel magnetically levitated (maglev) device with six-degree-of-freedom motion capability at nanometer precision. The applications of this device are manufacture of nanoscale structures, assembly of microparts, vibration isolation of delicate instrumentation, and telerobotics. In this thesis, a single-moving stage is levitated by six maglev actuators. The total mass of the moving stage is 0.2126 kg. Three laser interferometers and three capacitance sensors are used to gather the position information. User interface and real-time control routines are implemented digitally on a VME PC and a digital-signal-processor (DSP) board. The underlying mechanical design and fabrication, electrical system setup, control system design, noise analysis, and test results are presented in this thesis. Test results show a quick step response in all six axes and a resolution of 2.5 nm rms in horizontal motion and 25 nm rms in vertical motion

    Estimation and control of the pump pressure rise and flow from intrinsic parameters for a magnetically-levitated axial blood pump

    Get PDF
    An increase in the number of cardiac patients and a decrease in number of heart donors has triggered the development of artificial heart pump to support the proper functioning of the heart. There is also an increase in demand for smaller sized pumps with long term application. All these factors have stimulated the use of a magnetically-levitated rotary blood pump as Left Ventricular Assistant Devices. The demand of volume and pressure of blood varies from person to person. Moreover, the prevention of cannular ventricle collapse at suction, dependence of pump performance on its inlet, and outlet conditions has necessitated control of the pump. Also, the available invasive pressure and flow transducers limit the use, due to their low reliability, periodic calibration, and assembling problem. In this work, three independent and quantitative non-invasive measurement methods for the estimation of pump parameters from intrinsic parameters were developed, substantiated, and compared. The first method used DC motor current and the motor speed as the inputs to the system. In this method, behavior of brushless DC motor was studied using its working model. Pump speed and bearing current were the inputs for the second estimation technique. In this method, pump performance and impeller behavior were continuously monitored in three axes (X,Y, ). The third method is conceptualized on the output of the Hall Effect sensors, which were used for sensing the position of impeller, and the pump speed. The behavior of the sensor output with the impeller position in four axes (X,Y,Z, ) was developed using a real impeller in model housing. The data were analyzed in Microsoft Excel 2007 and MATLAB using least square estimation techniques and Fourier series expansion. An algorithm for each technique was developed. In addition, the propagation of errors and uncertainties at each step of estimation method were accounted and calculated, with the results for each method compared

    Elements for the design of precision machine tools and their application to a prototype 450mm Si-wafer grinder

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2010.Cataloged from PDF version of thesis.Includes bibliographical references (p. 155-160).Next generation precision machines will require ever more rigid elements to achieve the required machining tolerances. The presented work focuses on the application of ultra stiff servo-controllable kinematic couplings and hydrostatic bearings to minimize the structural loop of multi-axis precision grinding machines while reducing complexity. The fundamental importance of these ultra stiff, adjustable machine elements is demonstrated in the design of a grinding machine for 450mm diameter silicon wafers. A new generation of silicon wafer grinding machines is needed to back-grind large (450mm diameter) wafers from the production thickness of up to 1 mm down to less than 50pm so as to reduce the cost of Si-wafer based components. The grinding process needs to be done in about 90 sec (fine-grinding, e.g. -200 micron) to 160 sec (coarse grinding, e.g. -600 micron). After completion of the fine grinding process the wafer must be flat to 0.1 pm/o45mm and parallel to 0.6pm/450mm diameter. The surface roughness must be less than Rymax 0.1 pm and Ra 0.01 pm. Even though the required machining forces are 1 N/nm is required, which is many times stiffer than a typical machine tool (0.1 to 0.3 N/nm). In cooperation with industry, this work had the aim of creating a new machine design philosophy, with an example application that focuses on nano-adjustable kinematic coupling and feedback controlled water hydrostatic bearing technology. This new design philosophy is needed to enable the design of a relatively small footprint, compact precision machines. In particular, a ball screw preloaded height adjustable kinematic coupling and a magnetically preloaded hydrostatic thrust bearing were designed and built. The adjustable kinematic coupling allows for up to 8mm of vertical height adjust and 7N/nm stiffness at 26 kN preload. By varying the preload on the coupling by +/- 10%, in-process nm to micron height and tilt adjustment at >95% of the nominal stiffness is possible. Under the assumption of a constant flow supply, the hydrostatic bearing achieves a theoretical stiffness of 1 N/ nm at a 20 micron bearing gap and 7000 N combined gravitational and magnetic preload. In practice, the stiffness is limited by the pressure flow characteristics of the supplying pumps. To increase the bearing stiffness to a required 4N/ nm, various control loops have been developed and tested.by Gerald Rothenhöfer.Ph.D

    A COMPARATIVE STUDY OF MONO-STABLE AND BI-STABLE MAGNETIC SPRING BASED ENERGY HARVESTERS

    Get PDF
    Continuous advancements in electronics manufacturing have resulted in the widespread use of low-power sensors, necessitating the development of energy harvesters capable of generating electric power from abundant and free energy sources such as ambient vibrations. A rising interest in energy harvesting technology inspires the work discussed herein using magnetic interactions to target nonlinear energy harvesting, which is compatible with ambient vibration energy sources with a broad frequency spectrum and particularly rich in low frequencies. This research aimed to look into a magnetic-levitation-based vibration energy harvester that could be tuned from a mono-stable to a bi-stable configuration. An oscillating magnet is levitated between two stationary top and bottom magnets in a mono-stable arrangement. A bi-stable configuration is achieved by fixing a cluster of peripheral solid magnets around the harvester housing. Magnetic forces in magnetic-levitation-based harvesters have traditionally been represented by polynomial functions integrated into the equation of motion. Analytical models for the interaction of magnets were developed and integrated into the equation of motion in this study. The analytical model of magnetic force delivers more accurate results for the bi-stable configuration than those produced using polynomial functions, according to the findings from this study. The results demonstrated that adjusting the geometric ratios of the peripheral magnets in the bi-stable configuration can produce a variety of load-deflection properties. The bi-stable design exhibits inter-well, chaotic, and intra-well motion at varying accelerations during dynamic operation. The bi-stable architecture benefits from thinner peripheral magnets, especially at lower acceleration values. Lower energy barriers, improved frequency responses, and nearly zero stiffness at equilibrium position are all advantages of thinner peripheral magnets. The harvester moved towards mono-stability when thinner peripheral magnets were utilized, showing that mono-stability is the preferred mode for vibration energy harvesting under harmonic excitation. We also propose an experimental and theoretical platform for developing design platform and performing analysis on mono-stable magnetic springs used in vibration energy harvesting devices. The results reveal a high level of agreement between the model and the experiment. For linear and nonlinear stiffness coefficients, approximate analytical expressions are found. The findings indicate that the linear and nonlinear stiffness coefficients are linked. The stationary ring magnet\u27s outer diameter can be utilized to modify the energy harvesting system\u27s nonlinearity to provide linear, hardening nonlinear, or softening nonlinear responses. Designers can use this work to understand the behavior of magnetic spring-based harvesting systems and assess their performance concerning design factors. Other energy systems that use magnetic springs, such as energy sinks, could benefit from this research

    Index to 1985 NASA Tech Briefs, volume 10, numbers 1-4

    Get PDF
    Short announcements of new technology derived from the R&D activities of NASA are presented. These briefs emphasize information considered likely to be transferrable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. This index for 1985 Tech Briefs contains abstracts and four indexes: subject, personal author, originating center, and Tech Brief Number. The following areas are covered: electronic components and circuits, electronic systems, physical sciences, materials, life sciences, mechanics, machinery, fabrication technology, and mathematics and information sciences

    Second International Symposium on Magnetic Suspension Technology, part 2

    Get PDF
    In order to examine the state of technology of all areas of magnetic suspension and to review related recent developments in sensors and controls approaches, superconducting magnet technology, and design/implementation practices, the 2nd International Symposium on Magnetic Suspension Technology was held at the Westin Hotel in Seattle, WA, on 11-13 Aug. 1993. The symposium included 18 technical sessions in which 44 papers were presented. The technical sessions covered the areas of bearings, bearing modelling, controls, vibration isolation, micromachines, superconductivity, wind tunnel magnetic suspension systems, magnetically levitated trains (MAGLEV), rotating machinery and energy storage, and applications. A list of attendees appears at the end of the document

    Third International Symposium on Magnetic Suspension Technology

    Get PDF
    In order to examine the state of technology of all areas of magnetic suspension and to review recent developments in sensors, controls, superconducting magnet technology, and design/implementation practices, the Third International Symposium on Magnetic Suspension Technology was held at the Holiday Inn Capital Plaza in Tallahassee, Florida on 13-15 Dec. 1995. The symposium included 19 sessions in which a total of 55 papers were presented. The technical sessions covered the areas of bearings, superconductivity, vibration isolation, maglev, controls, space applications, general applications, bearing/actuator design, modeling, precision applications, electromagnetic launch and hypersonic maglev, applications of superconductivity, and sensors

    PKM mechatronic clamping adaptive device

    Get PDF
    This study proposes a novel adaptive fixturing device based on active clamping systems for smart micropositioning of thin-walled precision parts. The modular architecture and the structure flexibility make the system suitable for various industrial applications. The proposed device is realized as a Parallel Kinematic Machine (PKM), opportunely sensorized and controlled, able to perform automatic error-free workpiece clamping procedures, drastically reducing the overall fixturing set-up time. The paper describes the kinematics and dynamics of this mechatronic system. A first campaign of experimental trails has been carried out on the prototype, obtaining promising results
    • …
    corecore