101 research outputs found

    Handover in Mobile WiMAX Networks: The State of Art and Research Issues

    Get PDF
    The next-generation Wireless Metropolitan Area Networks, using the Worldwide Interoperability for Microwave Access (WiMAX) as the core technology based on the IEEE 802.16 family of standards, is evolving as a Fourth-Generation (4G) technology. With the recent introduction of mobility management frameworks in the IEEE 802.16e standard, WiMAX is now placed in competition to the existing and forthcoming generations of wireless technologies for providing ubiquitous computing solutions. However, the success of a good mobility framework largely depends on the capability of performing fast and seamless handovers irrespective of the deployed architectural scenario. Now that the IEEE has defined the Mobile WiMAX (IEEE 802.16e) MAC-layer handover management framework, the Network Working Group (NWG) of the WiMAX Forum is working on the development of the upper layers. However, the path to commercialization of a full-fledged WiMAX mobility framework is full of research challenges. This article focuses on potential handover-related research issues in the existing and future WiMAX mobility framework. A survey of these issues in the MAC, Network and Cross-Layer scenarios is presented along with discussion of the different solutions to those challenges. A comparative study of the proposed solutions, coupled with some insights to the relevant issues, is also included

    Roaming Real-Time Applications - Mobility Services in IPv6 Networks

    Full text link
    Emerging mobility standards within the next generation Internet Protocol, IPv6, promise to continuously operate devices roaming between IP networks. Associated with the paradigm of ubiquitous computing and communication, network technology is on the spot to deliver voice and videoconferencing as a standard internet solution. However, current roaming procedures are too slow, to remain seamless for real-time applications. Multicast mobility still waits for a convincing design. This paper investigates the temporal behaviour of mobile IPv6 with dedicated focus on topological impacts. Extending the hierarchical mobile IPv6 approach we suggest protocol improvements for a continuous handover, which may serve bidirectional multicast communication, as well. Along this line a multicast mobility concept is introduced as a service for clients and sources, as they are of dedicated importance in multipoint conferencing applications. The mechanisms introduced do not rely on assumptions of any specific multicast routing protocol in use.Comment: 15 pages, 5 figure

    A network-based coordination design for seamless handover between heterogeneous wireless networks

    Get PDF
    Includes bibliographical references (leaves 136-144).The rapid growth of mobile and wireless communication over the last few years has spawned many different wireless networks. These heterogeneous wireless networks are envisioned to interwork over an IP-based infrastructure to realize ubiquitous network service provisioning for mobile users. Moreover, the availability of multiple-interface mobile nodes (MNs) will make it possible to communicate through any of these wireless access networks. This wireless network heterogeneity combined with the availability of multiple-interface MNs creates an environment where handovers between the different wireless access technologies become topical during mobility events. Therefore, operators with multiple interworking heterogeneous wireless networks will need to facilitate seamless vertical handovers among their multiple systems. Seamless vertical handovers ensure ubiquitous continuity to active connections hence satisfy the quality of experience of the mobile users

    Future Trends and Challenges for Mobile and Convergent Networks

    Get PDF
    Some traffic characteristics like real-time, location-based, and community-inspired, as well as the exponential increase on the data traffic in mobile networks, are challenging the academia and standardization communities to manage these networks in completely novel and intelligent ways, otherwise, current network infrastructures can not offer a connection service with an acceptable quality for both emergent traffic demand and application requisites. In this way, a very relevant research problem that needs to be addressed is how a heterogeneous wireless access infrastructure should be controlled to offer a network access with a proper level of quality for diverse flows ending at multi-mode devices in mobile scenarios. The current chapter reviews recent research and standardization work developed under the most used wireless access technologies and mobile access proposals. It comprehensively outlines the impact on the deployment of those technologies in future networking environments, not only on the network performance but also in how the most important requirements of several relevant players, such as, content providers, network operators, and users/terminals can be addressed. Finally, the chapter concludes referring the most notable aspects in how the environment of future networks are expected to evolve like technology convergence, service convergence, terminal convergence, market convergence, environmental awareness, energy-efficiency, self-organized and intelligent infrastructure, as well as the most important functional requisites to be addressed through that infrastructure such as flow mobility, data offloading, load balancing and vertical multihoming.Comment: In book 4G & Beyond: The Convergence of Networks, Devices and Services, Nova Science Publishers, 201

    A QoS-enabled resource management scheme for F-HMIPv6 micro mobility approach

    Get PDF
    In the near future, wireless networks will certainly run real-time applications with special Quality of Service (QoS) requirements. In this context micro mobility management schemes such as Fast Handovers over Hierarchical Mobile IPv6 (F-HMIPv6) will be a useful tool in reducing Mobile IPv6 (MIPv6) handover disruption and thereby to improve delay and losses. However, F-HMIPv6 alone does not support QoS requirements for real-time applications. Therefore, in order to accomplish this goal, a novel resource management scheme for the Differentiated Services (DiffServ) QoS model is proposed to be used as an add-on to F-HMIPv6. The new resource management scheme combines the F-HMIPv6 functionalities with the DiffServ QoS model and with network congestion control and dynamic reallocation mechanisms in order to accommodate different QoS traffic requirements. This new scheme based on a Measurement-Based Admission Control (MBAC) algorithm is effective, simple, scalable and avoids the well known traditional resource reservation issues such as state maintenance, signaling overhead and processing load. By means of the admission evaluation of new flows and handover flows, it is able to provide the desired QoS requirements for new flows while preserving the QoS of existing ones. The evaluated results show that all QoS metrics analyzed were significantly improved with the new architecture indicating that it is able to provide a highly predictive QoS support to F-HMIPv6

    Mobility management for Wi-Fi infrastructure and mesh networks

    Get PDF
    Magister Scientiae - MScThis thesis shows that mobility management protocols for infrastructure Internet may be used in a wireless mesh network environment. In this research Mobile IPv6 and Fast Handover for Hierarchical Mobile IPv6 are successfully implemented in a wireless mesh network environment. Two experiments were carried out: vertical and horizontal handover simulations. Vertical handover simulation involved a heterogeneous wireless environment comprising both wireless local area and wireless mesh networks. An OPNET Mobile IPv6 model was used to simulate the vertical handover experiment. Horizontal handover simulation involved Mobile IPv6 and Fast Handover for Hierarchical Mobile IPv6 applied in ns2 wireless mesh network. The vertical handover results show that MIPv6 is able to manage vertical handover between wireless local area and wireless mesh network. The horizontal handover results illustrate that in mesh networks, Fast Handover for Hierarchical Mobile IPv6's performance is superior to Mobile IPv6. Fast Handover for Hierarchical Mobile IPv6 generates more throughput and less delay than Mobile IPv6. Furthermore, Fast Handover for Hierarchical Mobile IPv6 drops less data packets than Mobile IPv6. The simulations indicate that even though there are multi-hop communications in wireless mesh networks, the performance of the multi-hop routing may not play a big role in the handover performance. This is so because the mesh routers are mostly static and the multi-hop routes are readily available. Thus, the total handover delay is not affected too much by the WMN hops in the paths for signaling message transmission.South Afric

    Future RAN architecture: SD-RAN through a general-purpose processing platform

    Get PDF
    In this article, we identify and study the potential of an integrated deployment solution for energy-efficient cellular networks combining the strengths of two very active current research themes: 1) software-defined radio access networks (SD-RANs) and 2) decoupled signaling and data transmissions, or beyond cellular green generation (BCG2) architecture, for enhanced energy efficiency. While SD-RAN envisions a decoupled centralized control plane and data-forwarding plane for flexible control, the BCG2 architecture calls for decoupling coverage from the capacity and coverage provided through an always-on low-power signaling node for a larger geographical area; the capacity is catered by various on-demand data nodes for maximum energy efficiency. In this article, we show that a combined approach that brings both specifications together can not only achieve greater benefits but also facilitate faster realization of both technologies. We propose the idea and design of a signaling controller that acts as a signaling node to provide always-on coverage, consuming low power, and at the same time host the control plane functions for the SDRAN through a general-purpose processing platform. The phantom cell concept is also a similar idea where a normal macrocell provides interference control to densely deployed small cells, although our initial results show that the integrated architecture has a much greater potential for energy savings than phantom cells

    Spectrum handoff management in cognitive hetnet systems overlaid with femtocells

    Get PDF
    Cognitive radio networks can facilitate seamless mobility to users considering their effective use of the dynamic spectrum access. This is performed by proactive/reactive adaptation of transmission operations in response to the wireless environment changes. One of these operations includes handoff between various wireless domains. The handoff here is not just a registration with a new base station, but it is also a negotiation to get access to the available channels locally in coexistence with the primary users. This dynamic adaptation between channels, known as spectrum handoff (SH), significantly impacts the time of handoff reconnection, which raises many questions about the functioning of the cognitive radio solution in the next generation of network systems. Therefore, it is necessary to develop a new method for roaming mobile users, particularly networks that employ small cells such as femtocells in order to reduce the unnecessary channel adaptations. This paper proposes a new entity, namely, channel assigning agent for managing SH, operator database, and channel access authentication. The goal of this mechanism is to retain the same channel used by a mobile user whenever possible to improve network performance by reducing the unnecessary SHs. The modeling and efficiency of the proposed scheme are validated through simulation results. The proposed solution improves the accessibility of resources and stability ofmobile radio connections that benefits mobile users as well as operators
    corecore