24,888 research outputs found

    Photometric Depth Super-Resolution

    Full text link
    This study explores the use of photometric techniques (shape-from-shading and uncalibrated photometric stereo) for upsampling the low-resolution depth map from an RGB-D sensor to the higher resolution of the companion RGB image. A single-shot variational approach is first put forward, which is effective as long as the target's reflectance is piecewise-constant. It is then shown that this dependency upon a specific reflectance model can be relaxed by focusing on a specific class of objects (e.g., faces), and delegate reflectance estimation to a deep neural network. A multi-shot strategy based on randomly varying lighting conditions is eventually discussed. It requires no training or prior on the reflectance, yet this comes at the price of a dedicated acquisition setup. Both quantitative and qualitative evaluations illustrate the effectiveness of the proposed methods on synthetic and real-world scenarios.Comment: IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI), 2019. First three authors contribute equall

    Learning single-image 3D reconstruction by generative modelling of shape, pose and shading

    Get PDF
    We present a unified framework tackling two problems: class-specific 3D reconstruction from a single image, and generation of new 3D shape samples. These tasks have received considerable attention recently; however, most existing approaches rely on 3D supervision, annotation of 2D images with keypoints or poses, and/or training with multiple views of each object instance. Our framework is very general: it can be trained in similar settings to existing approaches, while also supporting weaker supervision. Importantly, it can be trained purely from 2D images, without pose annotations, and with only a single view per instance. We employ meshes as an output representation, instead of voxels used in most prior work. This allows us to reason over lighting parameters and exploit shading information during training, which previous 2D-supervised methods cannot. Thus, our method can learn to generate and reconstruct concave object classes. We evaluate our approach in various settings, showing that: (i) it learns to disentangle shape from pose and lighting; (ii) using shading in the loss improves performance compared to just silhouettes; (iii) when using a standard single white light, our model outperforms state-of-the-art 2D-supervised methods, both with and without pose supervision, thanks to exploiting shading cues; (iv) performance improves further when using multiple coloured lights, even approaching that of state-of-the-art 3D-supervised methods; (v) shapes produced by our model capture smooth surfaces and fine details better than voxel-based approaches; and (vi) our approach supports concave classes such as bathtubs and sofas, which methods based on silhouettes cannot learn.Comment: Extension of arXiv:1807.09259, accepted to IJCV. Differentiable renderer available at https://github.com/pmh47/dir

    Learning to Reconstruct Texture-less Deformable Surfaces from a Single View

    Get PDF
    Recent years have seen the development of mature solutions for reconstructing deformable surfaces from a single image, provided that they are relatively well-textured. By contrast, recovering the 3D shape of texture-less surfaces remains an open problem, and essentially relates to Shape-from-Shading. In this paper, we introduce a data-driven approach to this problem. We introduce a general framework that can predict diverse 3D representations, such as meshes, normals, and depth maps. Our experiments show that meshes are ill-suited to handle texture-less 3D reconstruction in our context. Furthermore, we demonstrate that our approach generalizes well to unseen objects, and that it yields higher-quality reconstructions than a state-of-the-art SfS technique, particularly in terms of normal estimates. Our reconstructions accurately model the fine details of the surfaces, such as the creases of a T-Shirt worn by a person.Comment: Accepted to 3DV 201

    3D Face Reconstruction by Learning from Synthetic Data

    Full text link
    Fast and robust three-dimensional reconstruction of facial geometric structure from a single image is a challenging task with numerous applications. Here, we introduce a learning-based approach for reconstructing a three-dimensional face from a single image. Recent face recovery methods rely on accurate localization of key characteristic points. In contrast, the proposed approach is based on a Convolutional-Neural-Network (CNN) which extracts the face geometry directly from its image. Although such deep architectures outperform other models in complex computer vision problems, training them properly requires a large dataset of annotated examples. In the case of three-dimensional faces, currently, there are no large volume data sets, while acquiring such big-data is a tedious task. As an alternative, we propose to generate random, yet nearly photo-realistic, facial images for which the geometric form is known. The suggested model successfully recovers facial shapes from real images, even for faces with extreme expressions and under various lighting conditions.Comment: The first two authors contributed equally to this wor

    SfSNet: Learning Shape, Reflectance and Illuminance of Faces in the Wild

    Full text link
    We present SfSNet, an end-to-end learning framework for producing an accurate decomposition of an unconstrained human face image into shape, reflectance and illuminance. SfSNet is designed to reflect a physical lambertian rendering model. SfSNet learns from a mixture of labeled synthetic and unlabeled real world images. This allows the network to capture low frequency variations from synthetic and high frequency details from real images through the photometric reconstruction loss. SfSNet consists of a new decomposition architecture with residual blocks that learns a complete separation of albedo and normal. This is used along with the original image to predict lighting. SfSNet produces significantly better quantitative and qualitative results than state-of-the-art methods for inverse rendering and independent normal and illumination estimation.Comment: Accepted to CVPR 2018 (Spotlight

    Shape from Shading through Shape Evolution

    Full text link
    In this paper, we address the shape-from-shading problem by training deep networks with synthetic images. Unlike conventional approaches that combine deep learning and synthetic imagery, we propose an approach that does not need any external shape dataset to render synthetic images. Our approach consists of two synergistic processes: the evolution of complex shapes from simple primitives, and the training of a deep network for shape-from-shading. The evolution generates better shapes guided by the network training, while the training improves by using the evolved shapes. We show that our approach achieves state-of-the-art performance on a shape-from-shading benchmark
    • …
    corecore