177,050 research outputs found

    Detection of Adversarial Training Examples in Poisoning Attacks through Anomaly Detection

    Get PDF
    Machine learning has become an important component for many systems and applications including computer vision, spam filtering, malware and network intrusion detection, among others. Despite the capabilities of machine learning algorithms to extract valuable information from data and produce accurate predictions, it has been shown that these algorithms are vulnerable to attacks. Data poisoning is one of the most relevant security threats against machine learning systems, where attackers can subvert the learning process by injecting malicious samples in the training data. Recent work in adversarial machine learning has shown that the so-called optimal attack strategies can successfully poison linear classifiers, degrading the performance of the system dramatically after compromising a small fraction of the training dataset. In this paper we propose a defence mechanism to mitigate the effect of these optimal poisoning attacks based on outlier detection. We show empirically that the adversarial examples generated by these attack strategies are quite different from genuine points, as no detectability constrains are considered to craft the attack. Hence, they can be detected with an appropriate pre-filtering of the training dataset

    Visual Question Answering

    Get PDF
    There has been immense progress in the fields of computer vision, object detection and natural language processing (NLP) in recent years. Artificial Intelligence (AI) systems, such as question answering models, use NLP to provide a comprehensive capability to the machine. Such a machine can answer natural language queries about any portion of an unstructured text. An extension of this system is to combine NLP with computer vision to accomplish the task of Visual Question Answering (VQA), which is to build a system that can answer natural language queries about images. A number of systems have been proposed for VQA that use deep-learning architectures and learning algorithms. This project introduces a VQA system that gains deep understanding from images by using a deep convolutional neural network (CNN) that extracts image features. More specifically, the feature embeddings from the output layer of the VGG19 [1] model are used for this purpose. Our system achieves complex reasoning capabilities and understanding of natural language, so that it can correctly interpret the query and return an appropriate answer. The InferSent [2] model is used for obtaining sentence level embeddings to extract features from the question. Different architectures are proposed to merge the image and language models. Our system achieves results comparable to the baseline systems on the VQA dataset

    Towards adaptive and autonomous humanoid robots: from vision to actions

    Get PDF
    Although robotics research has seen advances over the last decades robots are still not in widespread use outside industrial applications. Yet a range of proposed scenarios have robots working together, helping and coexisting with humans in daily life. In all these a clear need to deal with a more unstructured, changing environment arises. I herein present a system that aims to overcome the limitations of highly complex robotic systems, in terms of autonomy and adaptation. The main focus of research is to investigate the use of visual feedback for improving reaching and grasping capabilities of complex robots. To facilitate this a combined integration of computer vision and machine learning techniques is employed. From a robot vision point of view the combination of domain knowledge from both imaging processing and machine learning techniques, can expand the capabilities of robots. I present a novel framework called Cartesian Genetic Programming for Image Processing (CGP-IP). CGP-IP can be trained to detect objects in the incoming camera streams and successfully demonstrated on many different problem domains. The approach requires only a few training images (it was tested with 5 to 10 images per experiment) is fast, scalable and robust yet requires very small training sets. Additionally, it can generate human readable programs that can be further customized and tuned. While CGP-IP is a supervised-learning technique, I show an integration on the iCub, that allows for the autonomous learning of object detection and identification. Finally this dissertation includes two proof-of-concepts that integrate the motion and action sides. First, reactive reaching and grasping is shown. It allows the robot to avoid obstacles detected in the visual stream, while reaching for the intended target object. Furthermore the integration enables us to use the robot in non-static environments, i.e. the reaching is adapted on-the- fly from the visual feedback received, e.g. when an obstacle is moved into the trajectory. The second integration highlights the capabilities of these frameworks, by improving the visual detection by performing object manipulation actions

    Indoor place classification for intelligent mobile systems

    Full text link
    University of Technology Sydney. Faculty of Engineering and Information Technology.Place classification is an emerging theme in the study of human-robot interaction which requires common understanding of human-defined concepts between the humans and machines. The requirement posts a significant challenge to the current intelligent mobile systems which are more likely to be operating in absolute coordinate systems, and hence unaware of the semantic labels. Aimed at filling this gap, the objective of the research is to develop an approach for intelligent mobile systems to understand and label the indoor environments in a holistic way based on the sensory observations. Focusing on commonly available sensors and machine learning based solutions which play a significant role in the research of place classification, solutions to train a machine to assign unknown instances with concepts understandable to human beings, like room, office and corridor, in both independent and structured prediction ways, have been proposed in this research. The solution modelling dependencies between random variables, which takes the spatial relationship between observations into consideration, is further extended by integrating the logical coexistence of the objects and the places to provide the machine with the additional object detection ability. The main techniques involve logistic regression, support vector machine, and conditional random field, in both supervised and semi-supervised learning frameworks. Experiments in a variety of environments show convincing place classification results through machine learning based approaches on data collected with either single or multiple sensory modalities; modelling spatial dependencies and introducing semi-supervised learning paradigm further improve the accuracy of the prediction and the generalisation ability of the system; and vision-based object detection can be seamlessly integrated into the learning framework to enhance the discrimination ability and the flexibility of the system. The contributions of this research lie in the in-depth studies on the place classification solutions with independent predictions, the improvements on the generalisation ability of the system through semi-supervised learning paradigm, the formulation of training a conditional random field with partially labelled data, and the integration of multiple cues in two sensory modalities to improve the system's functionality. It is anticipated that the findings of this research will significantly enhance the current capabilities of the human robot interaction and robot-environment interaction

    Lifelong Reinforcement Learning On Mobile Robots

    Get PDF
    Machine learning has shown tremendous growth in the past decades, unlocking new capabilities in a variety of fields including computer vision, natural language processing, and robotic control. While the sophistication of individual problems a learning system can handle has greatly advanced, the ability of a system to extend beyond an individual problem to adapt and solve new problems has progressed more slowly. This thesis explores the problem of progressive learning. The goal is to develop methodologies that accumulate, transfer, and adapt knowledge in applied settings where the system is faced with the ambiguity and resource limitations of operating in the physical world. There are undoubtedly many challenges to designing such a system, my thesis looks at the component of this problem related to how knowledge from previous tasks can be a benefit in the domain of reinforcement learning where the agent receives rewards for positive actions. Reinforcement learning is particularly difficult when training on physical systems, like mobile robots, where repeated trials can damage the system and unrestricted exploration is often associated with safety risks. I investigate how knowledge can be efficiently accumulated and applied to future reinforcement learning problems on mobile robots in order to reduce sample complexity and enable systems to adapt to novel settings. Doing this involves mathematical models which can combine knowledge from multiple tasks, methods for restructuring optimizations and data collection to handle sequential updates, and data selection strategies that can be used to address resource limitations

    Utilizing Reinforcement Learning and Computer Vision in a Pick-And-Place Operation for Sorting Objects in Motion

    Get PDF
    This master's thesis studies the implementation of advanced machine learning (ML) techniques in industrial automation systems, focusing on applying machine learning to enable and evolve autonomous sorting capabilities in robotic manipulators. In particular, Inverse Kinematics (IK) and Reinforcement Learning (RL) are investigated as methods for controlling a UR10e robotic arm for pick-and-place of moving objects on a conveyor belt within a small-scale sorting facility. A camera-based computer vision system applying YOLOv8 is used for real-time object detection and instance segmentation. Perception data is utilized to ascertain optimal grip points, specifically through an implemented algorithm that outputs optimal grip position, angle, and width. As the implemented system includes testing and evaluation on a physical system, the intricacies of hardware control, specifically the reverse engineering of an OnRobot RG6 gripper is elaborated as part of this study. The system is implemented on the Robotic Operating System (ROS), and its design is in particular driven by high modularity and scalability in mind. The camera-based vision system serves as the primary input, while the robot control is the output. The implemented system design allows for the evaluation of motion control employing both IK and RL. Computation of IK is conducted via MoveIt2, while the RL model is trained and computed in NVIDIA Isaac Sim. The high-level control of the robotic manipulator was accomplished with use of Proximal Policy Optimization (PPO). The main result of the research is a novel reward function for the pick-and-place operation that takes into account distance and orientation from the target object. In addition, the provided system administers task control by independently initializing pick-and-place operation phases for each environment. The findings demonstrate that PPO was able to significantly enhance the velocity, accuracy, and adaptability of industrial automation. Our research shows that accurate control of the robot arm can be reached by training the PPO Model purely by applying a digital twin simulation

    The SP theory of intelligence: benefits and applications

    Full text link
    This article describes existing and expected benefits of the "SP theory of intelligence", and some potential applications. The theory aims to simplify and integrate ideas across artificial intelligence, mainstream computing, and human perception and cognition, with information compression as a unifying theme. It combines conceptual simplicity with descriptive and explanatory power across several areas of computing and cognition. In the "SP machine" -- an expression of the SP theory which is currently realized in the form of a computer model -- there is potential for an overall simplification of computing systems, including software. The SP theory promises deeper insights and better solutions in several areas of application including, most notably, unsupervised learning, natural language processing, autonomous robots, computer vision, intelligent databases, software engineering, information compression, medical diagnosis and big data. There is also potential in areas such as the semantic web, bioinformatics, structuring of documents, the detection of computer viruses, data fusion, new kinds of computer, and the development of scientific theories. The theory promises seamless integration of structures and functions within and between different areas of application. The potential value, worldwide, of these benefits and applications is at least $190 billion each year. Further development would be facilitated by the creation of a high-parallel, open-source version of the SP machine, available to researchers everywhere.Comment: arXiv admin note: substantial text overlap with arXiv:1212.022
    • …
    corecore