6,081 research outputs found

    A Machine Learning Framework for Predicting Dementia and Mild Cognitive Impairment

    Get PDF
    Dementia is one of the most feared illnesses that has a growing year-to-year negative global impact, having a health and social care cost higher than cancer, stroke and chronic heart disease, taken together. Without the availability of a cure, nor a standardised clinical test, the utilisation of machine learning methods to identify individuals that are at risk of developing dementia could bring a new step towards proactive intervention. This study’s goal is to carry out a precursor analysis leading to building classification models with enhanced capabilities for differentiating diagnoses of CN (Cognitively Normal), MCI (Mild Cognitive Impairment) and Dementia. The predictive modelling approach we propose is based on the ReliefF method combined with statistical permutation tests for feature selection, and on model training, tuning, and testing based on algorithms such as Random Forests, Support Vector Machines, Gaussian Processes, Stochastic Gradient Boosting, and eXtreme Gradient Boosting. Stability of model performances were studied in computationally intensive Monte Carlo simulations. The results consistently show that our models accurately detect dementia, and also mild cognitive impairment patients by only using the inclusion of baseline measurements as predictors, thus illustrating the importance of baseline measurements. The best results issued from Monte Carlo were achieved by eXtreme Gradient Boosting optimised models, with an accuracy of 0.88 (SD 0.02), a sensitivity of 0.93 (SD 0.02) and a specificity of 0.94 (SD 0.01) for dementia, and a sensitivity of 0.86 (SD 0.02) and a specificity of 0.9 (SD 0.02) for mild cognitive impairment. These results support in particular future developments for a risk-based method that can identify an individual’s risk of developing dementia

    Modeling Big Medical Survival Data Using Decision Tree Analysis with Apache Spark

    Get PDF
    In many medical studies, an outcome of interest is not only whether an event occurred, but when an event occurred; and an example of this is Alzheimer’s disease (AD). Identifying patients with Mild Cognitive Impairment (MCI) who are likely to develop Alzheimer’s disease (AD) is highly important for AD treatment. Previous studies suggest that not all MCI patients will convert to AD. Massive amounts of data from longitudinal and extensive studies on thousands of Alzheimer’s patients have been generated. Building a computational model that can predict conversion form MCI to AD can be highly beneficial for early intervention and treatment planning for AD. This work presents a big data model that contains machine-learning techniques to determine the level of AD in a participant and predict the time of conversion to AD. The proposed framework considers one of the widely used screening assessment for detecting cognitive impairment called Montreal Cognitive Assessment (MoCA). MoCA data set was collected from different centers and integrated into our large data framework storage using a Hadoop Data File System (HDFS); the data was then analyzed using an Apache Spark framework. The accuracy of the proposed framework was compared with a semi-parametric Cox survival analysis model

    Predicting progression of mild cognitive impairment to dementia using neuropsychological data: a supervised learning approach using time windows

    Get PDF
    Background: Predicting progression from a stage of Mild Cognitive Impairment to dementia is a major pursuit in current research. It is broadly accepted that cognition declines with a continuum between MCI and dementia. As such, cohorts of MCI patients are usually heterogeneous, containing patients at different stages of the neurodegenerative process. This hampers the prognostic task. Nevertheless, when learning prognostic models, most studies use the entire cohort of MCI patients regardless of their disease stages. In this paper, we propose a Time Windows approach to predict conversion to dementia, learning with patients stratified using time windows, thus fine-tuning the prognosis regarding the time to conversion. Methods: In the proposed Time Windows approach, we grouped patients based on the clinical information of whether they converted (converter MCI) or remained MCI (stable MCI) within a specific time window. We tested time windows of 2, 3, 4 and 5 years. We developed a prognostic model for each time window using clinical and neuropsychological data and compared this approach with the commonly used in the literature, where all patients are used to learn the models, named as First Last approach. This enables to move from the traditional question "Will a MCI patient convert to dementia somewhere in the future" to the question "Will a MCI patient convert to dementia in a specific time window". Results: The proposed Time Windows approach outperformed the First Last approach. The results showed that we can predict conversion to dementia as early as 5 years before the event with an AUC of 0.88 in the cross-validation set and 0.76 in an independent validation set. Conclusions: Prognostic models using time windows have higher performance when predicting progression from MCI to dementia, when compared to the prognostic approach commonly used in the literature. Furthermore, the proposed Time Windows approach is more relevant from a clinical point of view, predicting conversion within a temporal interval rather than sometime in the future and allowing clinicians to timely adjust treatments and clinical appointments.FCT under the Neuroclinomics2 project [PTDC/EEI-SII/1937/2014, SFRH/BD/95846/2013]; INESC-ID plurianual [UID/CEC/50021/2013]; LASIGE Research Unit [UID/CEC/00408/2013
    • …
    corecore