347 research outputs found

    Towards machine learning enabled future-generation wireless network optimization

    Get PDF
    We anticipate that there will be an enormous amount of wireless devices connected to the Internet through the future-generation wireless networks. Those wireless devices vary from self-driving vehicles to smart wearable devices and intelligent house- hold electrical appliances. Under such circumstances, the network resource optimization faces the challenge of the requirement of both flexibility and performance. Current wireless communication still relies on one-size-fits-all optimization algorithms, which require meticulous design and elaborate maintenance, thus not flexible and cannot meet the growing requirements well. The future-generation wireless networks should be “smarter”, which means that the artificial intelligence-driven software-level design will play a more significant role in network optimization. In this thesis, we present three different ways of leveraging artificial intelligence (AI) and machine learning (ML) to design network optimization algorithms for three wireless Internet of things network optimization problems. Our ML-based approaches cover the use of multi-layer feed-forward artificial neural network and the graph convolutional network as the core of our AI decision-makers. The learning methods are supervised learning (for static decision-making) and reinforcement learning (for dynamic decision-making). We demonstrate the viability of applying ML in future- generation wireless network optimizations through extensive simulations. We summarize our discovery on the advantage of using ML in wireless network optimizations as the following three aspects: 1. Enabling the distributed decision-making to achieve the performance that near a centralized solution, without the requirement of multi-hop information; 2. Tackling with dynamic optimization through distributed self-learning decision- making agents, instead of designing a sophisticated optimization algorithm; 3. Reducing the time used in optimizing the solution of a combinatorial optimization problem. We envision that in the foreseeable future, AI and ML could help network service designers and operators to improve the network quality of experience swiftly and less expensively

    A Systematic Review of LPWAN and Short-Range Network using AI to Enhance Internet of Things

    Get PDF
    Artificial intelligence (AI) has recently been used frequently, especially concerning the Internet of Things (IoT). However, IoT devices cannot work alone, assisted by Low Power Wide Area Network (LPWAN) for long-distance communication and Short-Range Network for a short distance. However, few reviews about AI can help LPWAN and Short-Range Network. Therefore, the author took the opportunity to do this review. This study aims to review LPWAN and Short-Range Networks AI papers in systematically enhancing IoT performance. Reviews are also used to systematically maximize LPWAN systems and Short-Range networks to enhance IoT quality and discuss results that can be applied to a specific scope. The author utilizes selected reporting items for systematic review and meta-analysis (PRISMA). The authors conducted a systematic review of all study results in support of the authors' objectives. Also, the authors identify development and related study opportunities. The author found 79 suitable papers in this systematic review, so a discussion of the presented papers was carried out. Several technologies are widely used, such as LPWAN in general, with several papers originating from China. Many reports from conferences last year and papers related to this matter were from 2020-2021. The study is expected to inspire experimental studies in finding relevant scientific papers and become another review

    Design, Analysis and Computation in Wireless and Optical Networks

    Get PDF
    abstract: In the realm of network science, many topics can be abstracted as graph problems, such as routing, connectivity enhancement, resource/frequency allocation and so on. Though most of them are NP-hard to solve, heuristics as well as approximation algorithms are proposed to achieve reasonably good results. Accordingly, this dissertation studies graph related problems encountered in real applications. Two problems studied in this dissertation are derived from wireless network, two more problems studied are under scenarios of FIWI and optical network, one more problem is in Radio- Frequency Identification (RFID) domain and the last problem is inspired by satellite deployment. The objective of most of relay nodes placement problems, is to place the fewest number of relay nodes in the deployment area so that the network, formed by the sensors and the relay nodes, is connected. Under the fixed budget scenario, the expense involved in procuring the minimum number of relay nodes to make the network connected, may exceed the budget. In this dissertation, we study a family of problems whose goal is to design a network with “maximal connectedness” or “minimal disconnectedness”, subject to a fixed budget constraint. Apart from “connectivity”, we also study relay node problem in which degree constraint is considered. The balance of reducing the degree of the network while maximizing communication forms the basis of our d-degree minimum arrangement(d-MA) problem. In this dissertation, we look at several approaches to solving the generalized d-MA problem where we embed a graph onto a subgraph of a given degree. In recent years, considerable research has been conducted on optical and FIWI networks. Utilizing a recently proposed concept “candidate trees” in optical network, this dissertation studies counting problem on complete graphs. Closed form expressions are given for certain cases and a polynomial counting algorithm for general cases is also presented. Routing plays a major role in FiWi networks. Accordingly to a novel path length metric which emphasizes on “heaviest edge”, this dissertation proposes a polynomial algorithm on single path computation. NP-completeness proof as well as approximation algorithm are presented for multi-path routing. Radio-frequency identification (RFID) technology is extensively used at present for identification and tracking of a multitude of objects. In many configurations, simultaneous activation of two readers may cause a “reader collision” when tags are present in the intersection of the sensing ranges of both readers. This dissertation ad- dresses slotted time access for Readers and tries to provide a collision-free scheduling scheme while minimizing total reading time. Finally, this dissertation studies a monitoring problem on the surface of the earth for significant environmental, social/political and extreme events using satellites as sensors. It is assumed that the impact of a significant event spills into neighboring regions and there will be corresponding indicators. Careful deployment of sensors, utilizing “Identifying Codes”, can ensure that even though the number of deployed sensors is fewer than the number of regions, it may be possible to uniquely identify the region where the event has taken place.Dissertation/ThesisDoctoral Dissertation Computer Science 201

    Sensors and Systems for Indoor Positioning

    Get PDF
    This reprint is a reprint of the articles that appeared in Sensors' (MDPI) Special Issue on “Sensors and Systems for Indoor Positioning". The published original contributions focused on systems and technologies to enable indoor applications

    Enhancing supply chain performance using RFID technology and decision support systems in the industry 4.0: a systematic literature review

    Get PDF
    Supply Chain processes are continuously marred by myriad factors including varying demands, changing routes, major disruptions, and compliance issues. Therefore, supply chains require monitoring and ongoing optimization. Data science uses real-time data to provide analytical insights, leading to automation and improved decision making. RFID is an ideal technology to source big data, particularly in supply chains, because RFID tags are consumed across supply chain process, which includes scanning raw materials, completing products, transporting goods, and storing products, with accuracy and speed. This study carries out a systematic literature review of research articles published during the timeline (2000-2021) that discuss the role of RFID technology in developing decision support systems that optimize supply chains in light of Industry 4.0. Furthermore, the study offers recommendations on operational efficiency of supply chains while reducing the costs of implementing the RFID technology. The core contribution of this paper is its analysis and evaluation of various RFID implementation methods in supply chains with the aim of saving time effectively and achieving cost efficiencies

    A Survey of Positioning Systems Using Visible LED Lights

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.As Global Positioning System (GPS) cannot provide satisfying performance in indoor environments, indoor positioning technology, which utilizes indoor wireless signals instead of GPS signals, has grown rapidly in recent years. Meanwhile, visible light communication (VLC) using light devices such as light emitting diodes (LEDs) has been deemed to be a promising candidate in the heterogeneous wireless networks that may collaborate with radio frequencies (RF) wireless networks. In particular, light-fidelity has a great potential for deployment in future indoor environments because of its high throughput and security advantages. This paper provides a comprehensive study of a novel positioning technology based on visible white LED lights, which has attracted much attention from both academia and industry. The essential characteristics and principles of this system are deeply discussed, and relevant positioning algorithms and designs are classified and elaborated. This paper undertakes a thorough investigation into current LED-based indoor positioning systems and compares their performance through many aspects, such as test environment, accuracy, and cost. It presents indoor hybrid positioning systems among VLC and other systems (e.g., inertial sensors and RF systems). We also review and classify outdoor VLC positioning applications for the first time. Finally, this paper surveys major advances as well as open issues, challenges, and future research directions in VLC positioning systems.Peer reviewe

    Recent Advances in Indoor Localization Systems and Technologies

    Get PDF
    Despite the enormous technical progress seen in the past few years, the maturity of indoor localization technologies has not yet reached the level of GNSS solutions. The 23 selected papers in this book present the recent advances and new developments in indoor localization systems and technologies, propose novel or improved methods with increased performance, provide insight into various aspects of quality control, and also introduce some unorthodox positioning methods
    • 

    corecore