38,422 research outputs found

    Key Challenges and Opportunities in Hull Form Design Optimisation for Marine and Offshore Applications

    Get PDF
    New environmental regulations and volatile fuel prices have resulted in an ever-increasing need for reduction in carbon emission and fuel consumption. Designs of marine and offshore vessels are more demanding with complex operating requirements and oil and gas exploration venturing into deeper waters and hasher environments. Combinations of these factors have led to the need to optimise the design of the hull for the marine and offshore industry. The contribution of this paper is threefold. Firstly, the paper provides a comprehensive review of the state-ofthe- art techniques in hull form design. Specifically, it analyses geometry modelling, shape transformation, optimisation and performance evaluation. Strengths and weaknesses of existing solutions are also discussed. Secondly, key challenges of hull form optimisation specific to the design of marine and offshore vessels are identified and analysed. Thirdly, future trends in performing hull form design optimisation are investigated and possible solutions proposed. A case study on the design optimisation of bulbous bow for passenger ferry vessel to reduce wavemaking resistance is presented using NAPA software. Lastly, main issues and challenges are discussed to stimulate further ideas on future developments in this area, including the use of parallel computing and machine intelligence

    High-Level Object Oriented Genetic Programming in Logistic Warehouse Optimization

    Get PDF
    Disertační práce je zaměřena na optimalizaci průběhu pracovních operací v logistických skladech a distribučních centrech. Hlavním cílem je optimalizovat procesy plánování, rozvrhování a odbavování. Jelikož jde o problém patřící do třídy složitosti NP-težký, je výpočetně velmi náročné nalézt optimální řešení. Motivací pro řešení této práce je vyplnění pomyslné mezery mezi metodami zkoumanými na vědecké a akademické půdě a metodami používanými v produkčních komerčních prostředích. Jádro optimalizačního algoritmu je založeno na základě genetického programování řízeného bezkontextovou gramatikou. Hlavním přínosem této práce je a) navrhnout nový optimalizační algoritmus, který respektuje následující optimalizační podmínky: celkový čas zpracování, využití zdrojů, a zahlcení skladových uliček, které může nastat během zpracování úkolů, b) analyzovat historická data z provozu skladu a vyvinout sadu testovacích příkladů, které mohou sloužit jako referenční výsledky pro další výzkum, a dále c) pokusit se předčit stanovené referenční výsledky dosažené kvalifikovaným a trénovaným operačním manažerem jednoho z největších skladů ve střední Evropě.This work is focused on the work-flow optimization in logistic warehouses and distribution centers. The main aim is to optimize process planning, scheduling, and dispatching. The problem is quite accented in recent years. The problem is of NP hard class of problems and where is very computationally demanding to find an optimal solution. The main motivation for solving this problem is to fill the gap between the new optimization methods developed by researchers in academic world and the methods used in business world. The core of the optimization algorithm is built on the genetic programming driven by the context-free grammar. The main contribution of the thesis is a) to propose a new optimization algorithm which respects the makespan, the utilization, and the congestions of aisles which may occur, b) to analyze historical operational data from warehouse and to develop the set of benchmarks which could serve as the reference baseline results for further research, and c) to try outperform the baseline results set by the skilled and trained operational manager of the one of the biggest warehouses in the middle Europe.

    A Smart Modular Wireless System for Condition Monitoring Data Acquisition

    Get PDF
    Smart sensors, big data, the cloud and distributed data processing are some of the most interning changes in the way we collect, manage and treat data in recent years. These changes have not significantly influenced the common practices in condition monitoring for shipping. In part this is due to the reduced trust in data security, data ownership issues, lack of technological integration and obscurity of direct benefit. This paper presents a method of incorporating smart sensor techniques and distributed processing in data acquisition for condition monitoring to assist decision support for maintenance actions addressing these inhibitors

    Data-driven Ship Performance Models - - Emphasis on Energy Efficiency and Fatigue Safety

    Get PDF
    Due to digitalization in the maritime industry, a huge amount of ship operation-related data has been collected. The main objective of this thesis is to exploit machine learning/big data analytics to build data-driven ship performance models, focusing on speed-power relationship modeling, and fatigue accumulation assessment during a ship’s operation at sea.The speed-power performance models are established in three different ways: 1) semi-empirical white-box models, 2) machine learning black-box methods, and 3) physics-informed grey-box models. The white-box models include improved semi-empirical formulas for ship added resistance due to head waves, and further developed formulas in arbitrary wave headings. Validation studies using three case study ships show good agreement between the speed predictions by the white-box models and the long-term averages of full-scale measurements. Different supervised machine learning methods’ capabilities have been compared for black-box modeling. The XGBoost algorithm is found to have the most reliable predictive ability, with the highest efficiency suitable for onboard devices. The novel grey-box models are proposed by considering the physical principles in model tests and big data information from real sailing. It has been demonstrated that the proposed grey-box models can improve prediction accuracy by approximately 30% for ship speed estimation and provides 50% less cumulative error of sailing time than the black-box methods.The impact of voyage optimization-aided operations on the encountered wave conditions and ship fatigue damage is investigated in this thesis. By recommending appropriate routes, voyage optimization can greatly extend the fatigue life of a ship by at least 50%. The machine learning techniques are also applied to a ship’s fatigue assessment. The results indicate that the proposed data-driven fatigue assessment model could increase accuracy by approximately 70% for the case study vessel compared to other prominent spectral methods

    EviPlant: An efficient digital forensic challenge creation, manipulation and distribution solution

    Full text link
    Education and training in digital forensics requires a variety of suitable challenge corpora containing realistic features including regular wear-and-tear, background noise, and the actual digital traces to be discovered during investigation. Typically, the creation of these challenges requires overly arduous effort on the part of the educator to ensure their viability. Once created, the challenge image needs to be stored and distributed to a class for practical training. This storage and distribution step requires significant time and resources and may not even be possible in an online/distance learning scenario due to the data sizes involved. As part of this paper, we introduce a more capable methodology and system as an alternative to current approaches. EviPlant is a system designed for the efficient creation, manipulation, storage and distribution of challenges for digital forensics education and training. The system relies on the initial distribution of base disk images, i.e., images containing solely base operating systems. In order to create challenges for students, educators can boot the base system, emulate the desired activity and perform a "diffing" of resultant image and the base image. This diffing process extracts the modified artefacts and associated metadata and stores them in an "evidence package". Evidence packages can be created for different personae, different wear-and-tear, different emulated crimes, etc., and multiple evidence packages can be distributed to students and integrated into the base images. A number of additional applications in digital forensic challenge creation for tool testing and validation, proficiency testing, and malware analysis are also discussed as a result of using EviPlant.Comment: Digital Forensic Research Workshop Europe 201
    corecore