4,398 research outputs found

    Accelerating Deep Learning with Shrinkage and Recall

    Full text link
    Deep Learning is a very powerful machine learning model. Deep Learning trains a large number of parameters for multiple layers and is very slow when data is in large scale and the architecture size is large. Inspired from the shrinking technique used in accelerating computation of Support Vector Machines (SVM) algorithm and screening technique used in LASSO, we propose a shrinking Deep Learning with recall (sDLr) approach to speed up deep learning computation. We experiment shrinking Deep Learning with recall (sDLr) using Deep Neural Network (DNN), Deep Belief Network (DBN) and Convolution Neural Network (CNN) on 4 data sets. Results show that the speedup using shrinking Deep Learning with recall (sDLr) can reach more than 2.0 while still giving competitive classification performance.Comment: The 22nd IEEE International Conference on Parallel and Distributed Systems (ICPADS 2016

    Analysis Dictionary Learning: An Efficient and Discriminative Solution

    Full text link
    Discriminative Dictionary Learning (DL) methods have been widely advocated for image classification problems. To further sharpen their discriminative capabilities, most state-of-the-art DL methods have additional constraints included in the learning stages. These various constraints, however, lead to additional computational complexity. We hence propose an efficient Discriminative Convolutional Analysis Dictionary Learning (DCADL) method, as a lower cost Discriminative DL framework, to both characterize the image structures and refine the interclass structure representations. The proposed DCADL jointly learns a convolutional analysis dictionary and a universal classifier, while greatly reducing the time complexity in both training and testing phases, and achieving a competitive accuracy, thus demonstrating great performance in many experiments with standard databases.Comment: ICASSP 201

    Assisted Dictionary Learning for fMRI Data Analysis

    Full text link
    Extracting information from functional magnetic resonance (fMRI) images has been a major area of research for more than two decades. The goal of this work is to present a new method for the analysis of fMRI data sets, that is capable to incorporate a priori available information, via an efficient optimization framework. Tests on synthetic data sets demonstrate significant performance gains over existing methods of this kind.Comment: 5 pages, 2 figure
    • …
    corecore