591 research outputs found

    CIR Parametric Rules Precocity For Ranging Error Mitigation In IR-UWB

    Get PDF
    The cutting-edge technology to support high ranging accuracy within the indoor environment is Impulse Radio Ultra Wide Band (IR-UWB) standard. Besides accuracy, IR-UWB’s low-complex architecture and low power consumption align well with mobile devices. A prime challenge in indoor IR-UWB based localization is to achieve a position accuracy under non-line-of-sight (NLOS) and multipath propagation (MPP) conditions. Another challenge is to achieve acceptable accuracy in the conditions mentioned above without any significant increase in latency and computational burden. This dissertation proposes a solution for addressing the accuracy and reliability problem of indoor localization system satisfying acceptable delay or computational complexity overhead. The proposed methodology is based on rules for identification of line-of-sight (LOS) and NLOS and the range error bias estimation and correction due to NLOS and MPP conditions. The proposed methodology provides accuracy for two major application domains, namely, wireless sensor networks (WSNs) and indoor tracking and navigation (ITN). This dissertation offers two different solutions for the localization problem. The first solution is a rules-based classification of LOS / NLOS and geometric-based range correction for WSN. In the first solution, the Boolean logic based classification is designed for identification of LOS/NLOS. The logic is based on channel impulse response (CIR) parameters. The second solution is based on fuzzy logic. The fuzzy based solution is appealing well for the stringent precision requirements in ITN. In this solution, the parametric Boolean logic from the first solution is converted and expanded into rules. These rules are implemented into a fuzzy logic based mechanism for designing a fuzzy inference system. The system estimates the ranging errors and correcting unmitigated ranges. The expanded rules and designed methodology are based on theoretical analysis and empirical observations of the parameters. The rules accommodate the parameters uncertainties for estimating the ranging error through the relationship between the input parameters uncertainties and ranging error using fuzzy inference mechanism. The proposed solutions are evaluated using real-world measurements in different indoor environments. The performance of the proposed solutions is also evaluated in terms of true classification rate, residual ranging errors’ cumulative distributions and probability density distributions, as well as outage probabilities. Evaluation results show that the true classification rate is more than 95%. Moreover, using the proposed fuzzy logic based solution, the residual errors convergence of 90% is attained for error threshold of 10 cm, and the reliability of the localization system is also more than 90% for error threshold of 15 cm

    Environmental Cross-Validation of NLOS Machine Learning Classification/Mitigation with Low-Cost UWB Positioning Systems

    Get PDF
    [Abstract] Indoor positioning systems based on radio frequency inherently present multipath-related phenomena. This causes ranging systems such as ultra-wideband (UWB) to lose accuracy when detecting secondary propagation paths between two devices. If a positioning algorithm uses ranging measurements without considering these phenomena, it will face critical errors in estimating the position. This work analyzes the performance obtained in a localization system when combining location algorithms with machine learning techniques applied to a previous classification and mitigation of the propagation effects. For this purpose, real-world cross-scenarios are considered, where the data extracted from low-cost UWB devices for training the algorithms come from a scenario different from that considered for the test. The experimental results reveal that machine learning (ML) techniques are suitable for detecting non-line-of-sight (NLOS) ranging values in this situation.Xunta de Galicia; ED431C 2016-045Xunta de Galicia; ED431G/01Agencia Estatal de Investigación de España; TEC2016-75067-C4-1-

    Machine Learning for Improved Ultra-wideband Localization

    Get PDF

    Bidirectional UWB Localization: A Review on an Elastic Positioning Scheme for GNSS-deprived Zones

    Full text link
    A bidirectional Ultra-Wideband (UWB) localization scheme is one of the three widely deployed design integration processes ordinarily destined for time-based UWB positioning systems. The key property of the bidirectional UWB localization is its ability to serve both the navigation and tracking assignments on-demand within a single localization scheme. Conventionally, the perspective of navigation and tracking in wireless localization systems is viewed distinctly as an individual system because different methodologies were required for the implementation process. The ability to flexibly or elastically combine two unique positioning perspectives (i.e., navigation and tracking) within a single scheme is a paradigm shift in the way location-based services are observed. Thus, this article addresses and pinpoints the potential of a bidirectional UWB localization scheme. Regarding this, the complete system model of the bidirectional UWB localization scheme was comprehensively described based on modular processes in this article. The demonstrative evaluation results based on two system integration processes as well as a SWOT (strengths, weaknesses, opportunities, and threats) analysis of the scheme were also discussed. Moreover, we argued that the presented bidirectional scheme can also be used as a prospective topology for the realization of precise location estimation processes in 5G/6G wireless mobile networks, as well as Wi-Fi fine-time measurement-based positioning systems in this article.Comment: 30 pages, 12 figure

    Edge inference for UWB ranging error correction using autoencoders

    Get PDF
    Indoor localization knows many applications, such as industry 4.0, warehouses, healthcare, drones, etc., where high accuracy becomes more critical than ever. Recent advances in ultra-wideband localization systems allow high accuracies for multiple active users in line-of-sight environments, while they still introduce errors above 300 mm in non-line-of-sight environments due to multi-path effects. Current work tries to improve the localization accuracy of ultra-wideband through offline error correction approaches using popular machine learning techniques. However, these techniques are still limited to simple environments with few multi-path effects and focus on offline correction. With the upcoming demand for high accuracy and low latency indoor localization systems, there is a need to deploy (online) efficient error correction techniques with fast response times in dynamic and complex environments. To address this, we propose (i) a novel semi-supervised autoencoder-based machine learning approach for improving ranging accuracy of ultra-wideband localization beyond the limitations of current improvements while aiming for performance improvements and a small memory footprint and (ii) an edge inference architecture for online UWB ranging error correction. As such, this paper allows the design of accurate localization systems by using machine learning for low-cost edge devices. Compared to a deep neural network (as state-of-the-art, with a baseline error of 75 mm) the proposed autoencoder achieves a 29% higher accuracy. The proposed approach leverages robust and accurate ultra-wideband localization, which reduces the errors from 214 mm without correction to 58 mm with correction. Validation of edge inference using the proposed autoencoder on a NVIDIA Jetson Nano demonstrates significant uplink bandwidth savings and allows up to 20 rapidly ranging anchors per edge GPU

    Deep GEM-based network for weakly supervised UWB ranging error mitigation

    Get PDF
    Ultra-wideband (UWB)-based techniques, while becoming mainstream approaches for high-accurate positioning, tend to be challenged by ranging bias in harsh environments. The emerging learning-based methods for error mitigation have shown great performance improvement via exploiting high semantic features from raw data. However, these methods rely heavily on fully labeled data, leading to a high cost for data acquisition. We present a learning framework based on weak supervision for UWB ranging error mitigation. Specifically, we propose a deep learning method based on the generalized expectation-maximization (GEM) algorithm for robust UWB ranging error mitigation under weak supervision. Such method integrate probabilistic modeling into the deep learning scheme, and adopt weakly supervised labels as prior information. Extensive experiments in various supervision scenarios illustrate the superiority of the proposed method.Ramon y Cajal Grant RYC-2016-1938

    NLOS Identification and Mitigation Using Low-Cost UWB Devices

    Get PDF
    [Abstract] Indoor location systems based on ultra-wideband (UWB) technology have become very popular in recent years following the introduction of a number of low-cost devices on the market capable of providing accurate distance measurements. Although promising, UWB devices also suffer from the classic problems found when working in indoor scenarios, especially when there is no a clear line-of-sight (LOS) between the emitter and the receiver, causing the estimation error to increase up to several meters. In this work, machine learning (ML) techniques are employed to analyze several sets of real UWB measurements, captured in different scenarios, to try to identify the measurements facing non-line-of-sight (NLOS) propagation condition. Additionally, an ulterior process is carried out to mitigate the deviation of these measurements from the actual distance value between the devices. The results show that ML techniques are suitable to identify NLOS propagation conditions and also to mitigate the error of the estimates when there is LOS between the emitter and the receiver.Xunta de Galicia; ED431C 2016-045Xunta de Galicia; ED431G/01Agencia Estatal de Investigación de España; TEC2016-75067-C4-1-

    A Non-Line-of-Sight Mitigation Method For Indoor Ultra-Wideband Localization With Multiple Walls

    Get PDF
    Ultra-wideband (UWB) ranging techniques can provide accurate distance measurement under line-of-sight (LOS) conditions. However, various walls and obstacles in indoor non-LOS (NLOS) environments, which obstruct the direct propagation of UWB signals, can generate significant ranging errors. Due to the complex through-wall UWB signal propagation, most conventional studies simplify the ranging error model by assuming that the incidence angle is zero or the relative permittivity\u27s for different walls are the same to improve the through-wall UWB localization performance. Considering walls are different in realistic settings, this article presents a through-multiple-wall NLOS mitigation method for UWB indoor positioning. First, spatial geometric equilibrium equations of UWB through-wall propagation and a numerical method are developed for the precise modeling of UWB through-wall ranging errors. Then, calculated error maps are determined numerically without field measurements. Finally, the determined error maps are combined with a gray wolf optimization algorithm for localization. The proposed method is evaluated via field experiments with four rooms, three walls, and six penetration cases. The results demonstrate that the method can strongly mitigate the multi-wall. NLOS effects on the performance of UWB positioning systems. This solution can reduce project costs and number of power supplies for UWB indoor positioning applications

    A Semi-Supervised Learning Approach for Ranging Error Mitigation Based on UWB Waveform

    Full text link
    Localization systems based on ultra-wide band (UWB) measurements can have unsatisfactory performance in harsh environments due to the presence of non-line-of-sight (NLOS) errors. Learning-based methods for error mitigation have shown great performance improvement via directly exploiting the wideband waveform instead of handcrafted features. However, these methods require data samples fully labeled with actual measurement errors for training, which leads to time-consuming data collection. In this paper, we propose a semi-supervised learning method based on variational Bayes for UWB ranging error mitigation. Combining deep learning techniques and statistic tools, our method can efficiently accumulate knowledge from both labeled and unlabeled data samples. Extensive experiments illustrate the effectiveness of the proposed method under different supervision rates, and the superiority compared to other fully supervised methods even at a low supervision rate.Comment: 5 pages, 3 figures, Published in: MILCOM 2021 - 2021 IEEE Military Communications Conference (MILCOM

    A Deep Learning Approach for Generating Soft Range Information from RF Data

    Get PDF
    Radio frequency (RF)-based techniques are widely adopted for indoor localization despite the challenges in extracting sufficient information from measurements. Soft range information (SRI) offers a promising alternative for highly accurate localization that gives all probable range values rather than a single estimate of distance. We propose a deep learning approach to generate accurate SRI from RF measurements. In particular, the proposed approach is implemented by a network with two neural modules and conducts the generation directly from raw data. Extensive experiments on a case study with two public datasets are conducted to quantify the efficiency in different indoor localization tasks. The results show that the proposed approach can generate highly accurate SRI, and significantly outperforms conventional techniques in both nonline-of-sight (NLOS) detection and ranging error mitigation.Ramon y Cajal Grant RYC-2016-1938
    • …
    corecore