6,001 research outputs found

    Multivariate Approaches to Classification in Extragalactic Astronomy

    Get PDF
    Clustering objects into synthetic groups is a natural activity of any science. Astrophysics is not an exception and is now facing a deluge of data. For galaxies, the one-century old Hubble classification and the Hubble tuning fork are still largely in use, together with numerous mono-or bivariate classifications most often made by eye. However, a classification must be driven by the data, and sophisticated multivariate statistical tools are used more and more often. In this paper we review these different approaches in order to situate them in the general context of unsupervised and supervised learning. We insist on the astrophysical outcomes of these studies to show that multivariate analyses provide an obvious path toward a renewal of our classification of galaxies and are invaluable tools to investigate the physics and evolution of galaxies.Comment: Open Access paper. http://www.frontiersin.org/milky\_way\_and\_galaxies/10.3389/fspas.2015.00003/abstract\>. \<10.3389/fspas.2015.00003 \&g

    Unsupervised feature-learning for galaxy SEDs with denoising autoencoders

    Full text link
    With the increasing number of deep multi-wavelength galaxy surveys, the spectral energy distribution (SED) of galaxies has become an invaluable tool for studying the formation of their structures and their evolution. In this context, standard analysis relies on simple spectro-photometric selection criteria based on a few SED colors. If this fully supervised classification already yielded clear achievements, it is not optimal to extract relevant information from the data. In this article, we propose to employ very recent advances in machine learning, and more precisely in feature learning, to derive a data-driven diagram. We show that the proposed approach based on denoising autoencoders recovers the bi-modality in the galaxy population in an unsupervised manner, without using any prior knowledge on galaxy SED classification. This technique has been compared to principal component analysis (PCA) and to standard color/color representations. In addition, preliminary results illustrate that this enables the capturing of extra physically meaningful information, such as redshift dependence, galaxy mass evolution and variation over the specific star formation rate. PCA also results in an unsupervised representation with physical properties, such as mass and sSFR, although this representation separates out. less other characteristics (bimodality, redshift evolution) than denoising autoencoders.Comment: 11 pages and 15 figures. To be published in A&

    Pre-processing of tandem mass spectra using machine learning methods

    Get PDF
    Protein identification has been more helpful than before in the diagnosis and treatment of many diseases, such as cancer, heart disease and HIV. Tandem mass spectrometry is a powerful tool for protein identification. In a typical experiment, proteins are broken into small amino acid oligomers called peptides. By determining the amino acid sequence of several peptides of a protein, its whole amino acid sequence can be inferred. Therefore, peptide identification is the first step and a central issue for protein identification. Tandem mass spectrometers can produce a large number of tandem mass spectra which are used for peptide identification. Two issues should be addressed to improve the performance of current peptide identification algorithms. Firstly, nearly all spectra are noise-contaminated. As a result, the accuracy of peptide identification algorithms may suffer from the noise in spectra. Secondly, the majority of spectra are not identifiable because they are of too poor quality. Therefore, much time is wasted attempting to identify these unidentifiable spectra. The goal of this research is to design spectrum pre-processing algorithms to both speedup and improve the reliability of peptide identification from tandem mass spectra. Firstly, as a tandem mass spectrum is a one dimensional signal consisting of dozens to hundreds of peaks, and majority of peaks are noisy peaks, a spectrum denoising algorithm is proposed to remove most noisy peaks of spectra. Experimental results show that our denoising algorithm can remove about 69% of peaks which are potential noisy peaks among a spectrum. At the same time, the number of spectra that can be identified by Mascot algorithm increases by 31% and 14% for two tandem mass spectrum datasets. Next, a two-stage recursive feature elimination based on support vector machines (SVM-RFE) and a sparse logistic regression method are proposed to select the most relevant features to describe the quality of tandem mass spectra. Our methods can effectively select the most relevant features in terms of performance of classifiers trained with the different number of features. Thirdly, both supervised and unsupervised machine learning methods are used for the quality assessment of tandem mass spectra. A supervised classifier, (a support vector machine) can be trained to remove more than 90% of poor quality spectra without removing more than 10% of high quality spectra. Clustering methods such as model-based clustering are also used for quality assessment to cancel the need for a labeled training dataset and show promising results
    • …
    corecore