10,178 research outputs found

    Neural Networks for Modeling and Control of Particle Accelerators

    Full text link
    We describe some of the challenges of particle accelerator control, highlight recent advances in neural network techniques, discuss some promising avenues for incorporating neural networks into particle accelerator control systems, and describe a neural network-based control system that is being developed for resonance control of an RF electron gun at the Fermilab Accelerator Science and Technology (FAST) facility, including initial experimental results from a benchmark controller.Comment: 21 p

    Model-Based Policy Search for Automatic Tuning of Multivariate PID Controllers

    Full text link
    PID control architectures are widely used in industrial applications. Despite their low number of open parameters, tuning multiple, coupled PID controllers can become tedious in practice. In this paper, we extend PILCO, a model-based policy search framework, to automatically tune multivariate PID controllers purely based on data observed on an otherwise unknown system. The system's state is extended appropriately to frame the PID policy as a static state feedback policy. This renders PID tuning possible as the solution of a finite horizon optimal control problem without further a priori knowledge. The framework is applied to the task of balancing an inverted pendulum on a seven degree-of-freedom robotic arm, thereby demonstrating its capabilities of fast and data-efficient policy learning, even on complex real world problems.Comment: Accepted final version to appear in 2017 IEEE International Conference on Robotics and Automation (ICRA

    Uncertainty Aware Learning from Demonstrations in Multiple Contexts using Bayesian Neural Networks

    Get PDF
    Diversity of environments is a key challenge that causes learned robotic controllers to fail due to the discrepancies between the training and evaluation conditions. Training from demonstrations in various conditions can mitigate---but not completely prevent---such failures. Learned controllers such as neural networks typically do not have a notion of uncertainty that allows to diagnose an offset between training and testing conditions, and potentially intervene. In this work, we propose to use Bayesian Neural Networks, which have such a notion of uncertainty. We show that uncertainty can be leveraged to consistently detect situations in high-dimensional simulated and real robotic domains in which the performance of the learned controller would be sub-par. Also, we show that such an uncertainty based solution allows making an informed decision about when to invoke a fallback strategy. One fallback strategy is to request more data. We empirically show that providing data only when requested results in increased data-efficiency.Comment: Copyright 20XX IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other work

    Active Inference for Integrated State-Estimation, Control, and Learning

    Full text link
    This work presents an approach for control, state-estimation and learning model (hyper)parameters for robotic manipulators. It is based on the active inference framework, prominent in computational neuroscience as a theory of the brain, where behaviour arises from minimizing variational free-energy. The robotic manipulator shows adaptive and robust behaviour compared to state-of-the-art methods. Additionally, we show the exact relationship to classic methods such as PID control. Finally, we show that by learning a temporal parameter and model variances, our approach can deal with unmodelled dynamics, damps oscillations, and is robust against disturbances and poor initial parameters. The approach is validated on the `Franka Emika Panda' 7 DoF manipulator.Comment: 7 pages, 6 figures, accepted for presentation at the International Conference on Robotics and Automation (ICRA) 202

    Safe Controller Optimization for Quadrotors with Gaussian Processes

    Full text link
    One of the most fundamental problems when designing controllers for dynamic systems is the tuning of the controller parameters. Typically, a model of the system is used to obtain an initial controller, but ultimately the controller parameters must be tuned manually on the real system to achieve the best performance. To avoid this manual tuning step, methods from machine learning, such as Bayesian optimization, have been used. However, as these methods evaluate different controller parameters on the real system, safety-critical system failures may happen. In this paper, we overcome this problem by applying, for the first time, a recently developed safe optimization algorithm, SafeOpt, to the problem of automatic controller parameter tuning. Given an initial, low-performance controller, SafeOpt automatically optimizes the parameters of a control law while guaranteeing safety. It models the underlying performance measure as a Gaussian process and only explores new controller parameters whose performance lies above a safe performance threshold with high probability. Experimental results on a quadrotor vehicle indicate that the proposed method enables fast, automatic, and safe optimization of controller parameters without human intervention.Comment: IEEE International Conference on Robotics and Automation, 2016. 6 pages, 4 figures. A video of the experiments can be found at http://tiny.cc/icra16_video . A Python implementation of the algorithm is available at https://github.com/befelix/SafeOp

    Performance-oriented model learning for data-driven MPC design

    Get PDF
    Model Predictive Control (MPC) is an enabling technology in applications requiring controlling physical processes in an optimized way under constraints on inputs and outputs. However, in MPC closed-loop performance is pushed to the limits only if the plant under control is accurately modeled; otherwise, robust architectures need to be employed, at the price of reduced performance due to worst-case conservative assumptions. In this paper, instead of adapting the controller to handle uncertainty, we adapt the learning procedure so that the prediction model is selected to provide the best closed-loop performance. More specifically, we apply for the first time the above "identification for control" rationale to hierarchical MPC using data-driven methods and Bayesian optimization.Comment: Accepted for publication in the IEEE Control Systems Letters (L-CSS

    A Review on Energy Consumption Optimization Techniques in IoT Based Smart Building Environments

    Get PDF
    In recent years, due to the unnecessary wastage of electrical energy in residential buildings, the requirement of energy optimization and user comfort has gained vital importance. In the literature, various techniques have been proposed addressing the energy optimization problem. The goal of each technique was to maintain a balance between user comfort and energy requirements such that the user can achieve the desired comfort level with the minimum amount of energy consumption. Researchers have addressed the issue with the help of different optimization algorithms and variations in the parameters to reduce energy consumption. To the best of our knowledge, this problem is not solved yet due to its challenging nature. The gap in the literature is due to the advancements in the technology and drawbacks of the optimization algorithms and the introduction of different new optimization algorithms. Further, many newly proposed optimization algorithms which have produced better accuracy on the benchmark instances but have not been applied yet for the optimization of energy consumption in smart homes. In this paper, we have carried out a detailed literature review of the techniques used for the optimization of energy consumption and scheduling in smart homes. The detailed discussion has been carried out on different factors contributing towards thermal comfort, visual comfort, and air quality comfort. We have also reviewed the fog and edge computing techniques used in smart homes
    corecore