3,135 research outputs found

    Radiomics strategies for risk assessment of tumour failure in head-and-neck cancer

    Full text link
    Quantitative extraction of high-dimensional mineable data from medical images is a process known as radiomics. Radiomics is foreseen as an essential prognostic tool for cancer risk assessment and the quantification of intratumoural heterogeneity. In this work, 1615 radiomic features (quantifying tumour image intensity, shape, texture) extracted from pre-treatment FDG-PET and CT images of 300 patients from four different cohorts were analyzed for the risk assessment of locoregional recurrences (LR) and distant metastases (DM) in head-and-neck cancer. Prediction models combining radiomic and clinical variables were constructed via random forests and imbalance-adjustment strategies using two of the four cohorts. Independent validation of the prediction and prognostic performance of the models was carried out on the other two cohorts (LR: AUC = 0.69 and CI = 0.67; DM: AUC = 0.86 and CI = 0.88). Furthermore, the results obtained via Kaplan-Meier analysis demonstrated the potential of radiomics for assessing the risk of specific tumour outcomes using multiple stratification groups. This could have important clinical impact, notably by allowing for a better personalization of chemo-radiation treatments for head-and-neck cancer patients from different risk groups.Comment: (1) Paper: 33 pages, 4 figures, 1 table; (2) SUPP info: 41 pages, 7 figures, 8 table

    Digital pathology for the identification of prognostic biomarkers in head and neck cancer

    Get PDF
    Peer reviewedPublisher PD

    Comparison of nomogram with machine learning techniques for prediction of overall survival in patients with tongue cancer

    Get PDF
    Background: The prediction of overall survival in tongue cancer is important for planning of personalized care and patient counselling. Objectives: This study compares the performance of a nomogram with a machine learning model to predict overall survival in tongue cancer. The nomogram and machine learning model were built using a large data set from the Surveillance, Epidemiology, and End Results (SEER) program database. The comparison is necessary to provide the clinicians with a comprehensive, practical, and most accurate assistive system to predict overall survival of this patient population. Methods: The data set used included the records of 7596 tongue cancer patients. The considered machine learning algorithms were logistic regression, support vector machine, Bayes point machine, boosted decision tree, decision forest, and decision jungle. These algorithms were mainly evaluated in terms of the areas under the receiver operating characteristic (ROC) curve (AUC) and accuracy values. The performance of the algorithm that produced the best result was compared with a nomogram to predict overall survival in tongue cancer patients. Results: The boosted decision-tree algorithm outperformed other algorithms. When compared with a nomogram using external validation data, the boosted decision tree produced an accuracy of 88.7% while the nomogram showed an accuracy of 60.4%. In addition, it was found that age of patient, T stage, radiotherapy, and the surgical resection were the most prominent features with significant influence on the machine learning model's performance to predict overall survival. Conclusion: The machine learning model provides more personalized and reliable prognostic information of tongue cancer than the nomogram. However, the level of transparency offered by the nomogram in estimating patients' outcomes seems more confident and strengthened the principle of shared decision making between the patient and clinician. Therefore, a combination of a nomogram - machine learning (NomoML) predictive model may help to improve care, provides information to patients, and facilitates the clinicians in making tongue cancer management-related decisions.Peer reviewe

    Machine learning in oral squamous cell carcinoma: current status, clinical concerns and prospects for future-A systematic review

    Get PDF
    Background: Oral cancer can show heterogenous patterns of behavior. For proper and effective management of oral cancer, early diagnosis and accurate prediction of prognosis are important. To achieve this, artificial intelligence (AI) or its subfield, machine learning, has been touted for its potential to revolutionize cancer management through improved diagnostic precision and prediction of outcomes. Yet, to date, it has made only few contributions to actual medical practice or patient care. Objectives: This study provides a systematic review of diagnostic and prognostic application of machine learning in oral squamous cell carcinoma (OSCC) and also highlights some of the limitations and concerns of clinicians towards the implementation of machine learning-based models for daily clinical practice. Data sources: We searched OvidMedline, PubMed, Scopus, Web of Science, and Institute of Electrical and Electronics Engineers (IEEE) databases from inception until February 2020 for articles that used machine learning for diagnostic or prognostic purposes of OSCC. Eligibility criteria: Only original studies that examined the application of machine learning models for prognostic and/or diagnostic purposes were considered. Data extraction: Independent extraction of articles was done by two researchers (A.R. & O.Y) using predefine study selection criteria. We used the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) in the searching and screening processes. We also used Prediction model Risk of Bias Assessment Tool (PROBAST) for assessing the risk of bias (ROB) and quality of included studies. Results: A total of 41 studies were published to have used machine learning to aid in the diagnosis/or prognosis of OSCC. The majority of these studies used the support vector machine (SVM) and artificial neural network (ANN) algorithms as machine learning techniques. Their specificity ranged from 0.57 to 1.00, sensitivity from 0.70 to 1.00, and accuracy from 63.4 % to 100.0 % in these studies. The main limitations and concerns can be grouped as either the challenges inherent to the science of machine learning or relating to the clinical implementations. Conclusion: Machine learning models have been reported to show promising performances for diagnostic and prognostic analyses in studies of oral cancer. These models should be developed to further enhance explainability, interpretability, and externally validated for generalizability in order to be safely integrated into daily clinical practices. Also, regulatory frameworks for the adoption of these models in clinical practices are necessary.Peer reviewe
    corecore