3,079 research outputs found

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    Load-aware Channel Selection for 802.11 WLANs with Limited Measurement

    Full text link
    It has been known that load unaware channel selection in 802.11 networks results in high level interference, and can significantly reduce the network throughput. In current implementation, the only way to determine the traffic load on a channel is to measure that channel for a certain duration of time. Therefore, in order to find the best channel with the minimum load all channels have to be measured, which is costly and can cause unacceptable communication interruptions between the AP and the stations. In this paper, we propose a learning based approach which aims to find the channel with the minimum load by measuring only limited number of channels. Our method uses Gaussian Process Regressing to accurately track the traffic load on each channel based on the previous measured load. We confirm the performance of our algorithm by using experimental data, and show that the time consumed for the load measurement can be reduced up to 46% compared to the case where all channels are monitored.Comment: accepted to IC

    Decentralized Constraint Satisfaction

    Get PDF
    We show that several important resource allocation problems in wireless networks fit within the common framework of Constraint Satisfaction Problems (CSPs). Inspired by the requirements of these applications, where variables are located at distinct network devices that may not be able to communicate but may interfere, we define natural criteria that a CSP solver must possess in order to be practical. We term these algorithms decentralized CSP solvers. The best known CSP solvers were designed for centralized problems and do not meet these criteria. We introduce a stochastic decentralized CSP solver and prove that it will find a solution in almost surely finite time, should one exist, also showing it has many practically desirable properties. We benchmark the algorithm's performance on a well-studied class of CSPs, random k-SAT, illustrating that the time the algorithm takes to find a satisfying assignment is competitive with stochastic centralized solvers on problems with order a thousand variables despite its decentralized nature. We demonstrate the solver's practical utility for the problems that motivated its introduction by using it to find a non-interfering channel allocation for a network formed from data from downtown Manhattan
    • …
    corecore