82 research outputs found

    Ultra-low noise, high-frame rate readout design for a 3D-stacked CMOS image sensor

    Get PDF
    Due to the switch from CCD to CMOS technology, CMOS based image sensors have become smaller, cheaper, faster, and have recently outclassed CCDs in terms of image quality. Apart from the extensive set of applications requiring image sensors, the next technological breakthrough in imaging would be to consolidate and completely shift the conventional CMOS image sensor technology to the 3D-stacked technology. Stacking is recent and an innovative technology in the imaging field, allowing multiple silicon tiers with different functions to be stacked on top of each other. The technology allows for an extreme parallelism of the pixel readout circuitry. Furthermore, the readout is placed underneath the pixel array on a 3D-stacked image sensor, and the parallelism of the readout can remain constant at any spatial resolution of the sensors, allowing extreme low noise and a high-frame rate (design) at virtually any sensor array resolution. The objective of this work is the design of ultra-low noise readout circuits meant for 3D-stacked image sensors, structured with parallel readout circuitries. The readout circuit’s key requirements are low noise, speed, low-area (for higher parallelism), and low power. A CMOS imaging review is presented through a short historical background, followed by the description of the motivation, the research goals, and the work contributions. The fundamentals of CMOS image sensors are addressed, as a part of highlighting the typical image sensor features, the essential building blocks, types of operation, as well as their physical characteristics and their evaluation metrics. Following up on this, the document pays attention to the readout circuit’s noise theory and the column converters theory, to identify possible pitfalls to obtain sub-electron noise imagers. Lastly, the fabricated test CIS device performances are reported along with conjectures and conclusions, ending this thesis with the 3D-stacked subject issues and the future work. A part of the developed research work is located in the Appendices.Devido à mudança da tecnologia CCD para CMOS, os sensores de imagem em CMOS tornam se mais pequenos, mais baratos, mais rápidos, e mais recentemente, ultrapassaram os sensores CCD no que respeita à qualidade de imagem. Para além do vasto conjunto de aplicações que requerem sensores de imagem, o próximo salto tecnológico no ramo dos sensores de imagem é o de mudar completamente da tecnologia de sensores de imagem CMOS convencional para a tecnologia “3D-stacked”. O empilhamento de chips é relativamente recente e é uma tecnologia inovadora no campo dos sensores de imagem, permitindo vários planos de silício com diferentes funções poderem ser empilhados uns sobre os outros. Esta tecnologia permite portanto, um paralelismo extremo na leitura dos sinais vindos da matriz de píxeis. Além disso, num sensor de imagem de planos de silício empilhados, os circuitos de leitura estão posicionados debaixo da matriz de píxeis, sendo que dessa forma, o paralelismo pode manter-se constante para qualquer resolução espacial, permitindo assim atingir um extremo baixo ruído e um alto debito de imagens, virtualmente para qualquer resolução desejada. O objetivo deste trabalho é o de desenhar circuitos de leitura de coluna de muito baixo ruído, planeados para serem empregues em sensores de imagem “3D-stacked” com estruturas altamente paralelizadas. Os requisitos chave para os circuitos de leitura são de baixo ruído, rapidez e pouca área utilizada, de forma a obter-se o melhor rácio. Uma breve revisão histórica dos sensores de imagem CMOS é apresentada, seguida da motivação, dos objetivos e das contribuições feitas. Os fundamentos dos sensores de imagem CMOS são também abordados para expor as suas características, os blocos essenciais, os tipos de operação, assim como as suas características físicas e suas métricas de avaliação. No seguimento disto, especial atenção é dada à teoria subjacente ao ruído inerente dos circuitos de leitura e dos conversores de coluna, servindo para identificar os possíveis aspetos que dificultem atingir a tão desejada performance de muito baixo ruído. Por fim, os resultados experimentais do sensor desenvolvido são apresentados junto com possíveis conjeturas e respetivas conclusões, terminando o documento com o assunto de empilhamento vertical de camadas de silício, junto com o possível trabalho futuro

    Design Considerations for Wide Bandwidth Continuous-Time Low-Pass Delta-Sigma Analog-to-Digital Converters

    Get PDF
    Continuous-time (CT) delta-sigma (ΔΣ) analog-to-digital converters (ADC) have emerged as the popular choice to achieve high resolution and large bandwidth due to their low cost, power efficiency, inherent anti-alias filtering and digital post processing capabilities. This work presents a detailed system-level design methodology for a low-power CT ΔΣ ADC. Design considerations and trade-offs at the system-level are presented. A novel technique to reduce the sensitivity of the proposed ADC to clock jitter-induced feedback charge variations by employing a hybrid digital-to-analog converter (DAC) based on switched-capacitor circuits is also presented. The proposed technique provides a clock jitter tolerance of up to 5ps (rms). The system is implemented using a 5th order active-RC loop filter, 9-level quantizer and DAC, achieving 74dB SNDR over 20MHz signal bandwidth, at 400MHz sampling frequency in a 1.2V, 90 nm CMOS technology. A novel technique to improve the linearity of the feedback digital-to-analog converters (DAC) in a target 11-bits resolution, 100MHz bandwidth, 2GHz sampling frequency CT ΔΣ ADC is also presented in this work. DAC linearity is improved by combining dynamic element matching and automatic background calibration to achieve up to 18dB improvement in the SNR. Transistor-level circuit implementation of the proposed technique was done in a 1.8V, 0.18μm BiCMOS process

    Linearization of Time-encoded ADCs Architectures for Smart MEMS Sensors in Low Power CMOS Technology

    Get PDF
    Mención Internacional en el título de doctorIn the last few years, the development of mobile technologies and machine learning applications has increased the demand of MEMS-based digital microphones. Mobile devices have several microphones enabling noise canceling, acoustic beamforming and speech recognition. With the development of machine learning applications the interest to integrate sensors with neural networks has increased. This has driven the interest to develop digital microphones in nanometer CMOS nodes where the microphone analog-front end and digital processing, potentially including neural networks, is integrated on the same chip. Traditionally, analog-to-digital converters (ADCs) in digital microphones have been implemented using high order Sigma-Delta modulators. The most common technique to implement these high order Sigma-Selta modulators is switchedcapacitor CMOS circuits. Recently, to reduce power consumption and make them more suitable for tasks that require always-on operation, such as keyword recognition, switched-capacitor circuits have been improved using inverter-based operational amplifier integrators. Alternatively, switched-capacitor based Sigma- Delta modulators have been replaced by continuous time Sigma-Delta converters. Nevertheless, in both implementations the input signal is voltage encoded across the modulator, making the integration in smaller CMOS nodes more challenging due to the reduced voltage supply. An alternative technique consists on encoding the input signal on time (or frequency) instead of voltage. This is what time-encoded converters do. Lately, time-encoding converters have gained popularity as they are more suitable to nanometer CMOS nodes than Sigma-Delta converters. Among the ones that have drawn more interest we find voltage-controlled oscillator based ADCs (VCOADCs). VCO-ADCs can be implemented using CMOS inverter based ring oscillators (RO) and digital circuitry. They also show noise-shaping properties. This makes them a very interesting alternative for implementation of ADCs in nanometer CMOS nodes. Nevertheless, two main circuit impairments are present in VCO-ADCs, and both come from the oscillator non-idealities. The first of them is the oscillator phase noise, that reduces the resolution of the ADC. The second is the non-linear tuning curve of the oscillator, that results in harmonic distortion at medium to high input amplitudes. In this thesis we analyze the use of time encoding ADCs for MEMS microphones with special focus on ring oscillator based ADCs (RO-ADCs). Firstly, we study the use of a dual-slope based SAR noise shaped quantizer (SAR-NSQ) in sigma-delta loops. This quantizer adds and extra level of noise-shaping to the modulator, improving the resolution. The quantizer is explained, and equations for the noise transfer function (NTF) of a third order sigma-delta using a second order filter and the NSQ are presented. Secondly, we move our attention to the topic of RO-ADCs. We present a high dynamic range MEMS microphone 130nm CMOS chip based on an open-loop VCO-ADC. This dissertation shows the implementation of the analog front-end that includes the oscillator and the MEMS interface, with a focus on achieving low power consumption with low noise and a high dynamic range. The digital circuitry is left to be explained by the coauthor of the chip in his dissertation. The chip achieves a 80dBA peak SNDR and 108dB dynamic range with a THD of 1.5% at 128 dBSPL with a power consumption of 438μW. After that, we analyze the use of a frequency-dependent-resistor (FDR) to implement an unsampled feedback loop around the oscillator. The objective is to reduce distortion. Additionally phase noise mitigation is achieved. A first topology including an operational amplifier to increase the loop gain is analyzed. The design is silicon proven in a 130 nm CMOS chip that achieves a 84 dBA peak SNDR with an analog power consumption of 600μW. A second topology without the operational amplifier is also analyzed. Two chips are designed with this topology. The first chip in 130 nm CMOS is a full VCO-ADC including the frequencyto- digital converter (F2D). This chip achieves a peak SNDR of 76.6 dBA with a power consumption of 482μW. The second chip includes only the oscillator and is implemented in 55nm CMOS. The peak SNDR is 78.15 dBA and the analog power consumption is 153μW. To finish this thesis, two circuits that use an FDR with a ring oscillator are presented. The first is a capacity-to-digital converter (CDC). The second is a filter made with an FDR and an oscillator intended for voice activity detection tasks (VAD).En los últimos años, el desarrollo de las tecnologías móviles y las aplicaciones de machine-learning han aumentado la demanda de micrófonos digitales basados en MEMS. Los dipositivos móviles tienen varios micrófonos que permiten la cancelación de ruido, el beamforming o conformación de haces y el reconocimiento de voz. Con el desarrollo de aplicaciones de aprendizaje automático, el interés por integrar sensores con redes neuronales ha aumentado. Esto ha impulsado el interés por desarrollar micrófonos digitales en nodos CMOS nanométricos donde el front-end analógico y el procesamiento digital del micrófono, que puede incluir redes neuronales, está integrado en el mismo chip. Tradicionalmente, los convertidores analógicos-digitales (ADC) en micrófonos digitales han sido implementados utilizando moduladores Sigma-Delta de orden elevado. La técnica más común para implementar estos moduladores Sigma- Delta es el uso de circuitos CMOS de capacidades conmutadas. Recientemente, para reducir el consumo de potencia y hacerlos más adecuados para las tareas que requieren una operación continua, como el reconocimiento de palabras clave, los convertidores Sigma-Delta de capacidades conmutadas has sido mejorados con el uso de integradores implementados con amplificadores operacionales basados en inversores CMOS. Alternativamente, los Sigma-Delta de capacidades conmutadas han sido reemplazados por moduladores en tiempo continuo. No obstante, en ambas implementaciones, la señal de entrada es codificada en voltaje durante el proceso de conversión, lo que hace que la integración en nodos CMOS más pequeños sea complicada debido a la menor tensión de alimentación. Una técnica alternativa consiste en codificar la señal de entrada en tiempo (o frecuencia) en lugar de tensión. Esto es lo que hacen los convertidores de codificación temporal. Recientemente, los convertidores de codificación temporal han ganado popularidad ya que son más adecuados para nodos CMOS nanométricos que los convertidores Sigma-Delta. Entre los que más interés han despertado encontramos los ADCs basados en osciladores controlados por tensión (VCO-ADC). Los VCO-ADC se pueden implementar usando osciladores en anillo (RO) implementados con inversores CMOS y circuitos digitales. Esta familia de convertidores también tiene conformado de ruido. Esto los convierte en una alternativa muy interesante para la implementación de convertidores en nodos CMOS nanométricos. Sin embargo, dos problemas principales están presentes en este tipo de ADCs debidos ambos a las no idealidades del oscilador. El primero de los problemas es la presencia de ruido de fase en el oscilador, lo que reduce la resolución del ADC. El segundo es la curva de conversion voltaje-frecuencia no lineal del oscilador, lo que causa distorsión a amplitudes medias y altas. En esta tesis analizamos el uso de ADCs de codificación temporal para micrófonos MEMS, con especial interés en ADCS basados en osciladores de anillo (RO-ADC). En primer lugar, estudiamos el uso de un cuantificador SAR con conformado de ruido (SAR-NSQ) en moduladores Sigma-Delta. Este cuantificador agrega un orden adicional de conformado de ruido al modulador, mejorando la resolución. En este documento se explica el cuantificador y obtienen las ecuaciones para la función de transferencia de ruido (NTF) de un sigma-delta de tercer orden usando un filtro de segundo orden y el NSQ. En segundo lugar, dirigimos nuestra atención al tema de los RO-ADC. Presentamos el chip de un micrófono MEMS de alto rango dinámico en CMOS de 130 nm basado en un VCO-ADC de bucle abierto. En esta tesis se explica la implementación del front-end analógico que incluye el oscilador y la interfaz con el MEMS. Esta implementación se ha llevado a cabo con el objetivo de lograr un bajo consumo de potencia, un bajo nivel de ruido y un alto rango dinámico. La descripción del back-end digital se deja para la tesis del couator del chip. La SNDR de pico del chip es de 80dBA y el rango dinámico de 108dB con una THD de 1,5% a 128 dBSPL y un consumo de potencia de 438μW. Finalmente, se analiza el uso de una resistencia dependiente de frecuencia (FDR) para implementar un bucle de realimentación no muestreado alrededor del oscilador. El objetivo es reducir la distorsión. Además, también se logra la mitigación del ruido de fase del oscilador. Se analyza una primera topologia de realimentación incluyendo un amplificador operacional para incrementar la ganancia de bucle. Este diseño se prueba en silicio en un chip CMOS de 130nm que logra un pico de SNDR de 84 dBA con un consumo de potencia de 600μW en la parte analógica. Seguidamente, se analiza una segunda topología sin el amplificador operacional. Se fabrican y miden dos chips diseñados con esta topologia. El primero de ellos en CMOS de 130 nm es un VCO-ADC completo que incluye el convertidor de frecuencia a digital (F2D). Este chip alcanza un pico SNDR de 76,6 dBA con un consumo de potencia de 482μW. El segundo incluye solo el oscilador y está implementado en CMOS de 55nm. El pico SNDR es 78.15 dBA y el el consumo de potencia analógica es de 153μW. Para cerrar esta tesis, se presentan dos circuitos que usan la FDR con un oscilador en anillo. El primero es un convertidor de capacidad a digital (CDC). El segundo es un filtro realizado con una FDR y un oscilador, enfocado a tareas de detección de voz (VAD).Programa de Doctorado en Ingeniería Eléctrica, Electrónica y Automática por la Universidad Carlos III de MadridPresidente: Antonio Jesús Torralba Silgado.- Secretaria: María Luisa López Vallejo.- Vocal: Pieter Rombout

    An IF input continuous-time sigma-delta analog-digital converter with high image rejection.

    Get PDF
    Shen Jun-Hua.Thesis (M.Phil.)--Chinese University of Hong Kong, 2004.Includes bibliographical references (leaves 151-154).Abstracts in English and Chinese.Abstract --- p.ii摘要 --- p.ivAcknowledgments --- p.viTable of Contents --- p.viiList of Figures --- p.ixList of Tables --- p.xiiChapter Chapter 1 --- Introduction --- p.1Chapter 1.1. --- Overview --- p.1Chapter 1.2. --- Motivation and Objectives --- p.5Chapter 1.3. --- Original Contributions of This Work --- p.6Chapter 1.4. --- Organization of the Thesis --- p.7Chapter Chapter 2 --- Sigma-delta Modulation and IF A/D Conversion --- p.8Chapter 2.1. --- Introduction --- p.8Chapter 2.2. --- Fundamentals of Sigma-delta Modulation --- p.9Chapter 2.2.1. --- Feedback Controlled System --- p.9Chapter 2.2.2. --- Quantization Noise --- p.11Chapter 2.2.3. --- Oversampling and Noise-shaping --- p.11Chapter 2.2.4. --- Stability --- p.15Chapter 2.2.5. --- Noise Sources --- p.17Chapter 2.2.6. --- Baseband Sigma-delta Modulation --- p.28Chapter 2.2.7. --- Bandpass Sigma-delta Modulation --- p.28Chapter 2.3. --- Discrete-time Sigma-delta Modulation --- p.29Chapter 2.4. --- Continuous-time Sigma-delta Modulation --- p.29Chapter 2.5. --- IF-input Complex Analog to Digital Converter --- p.31Chapter 2.6. --- Image Rejection --- p.32Chapter 2.7. --- Integrated Mixer --- p.36Chapter Chapter 3 --- High Level Modeling and Simulation --- p.39Chapter 3.1. --- Introduction --- p.39Chapter 3.2. --- System Level Sigma-delta Modulator Design --- p.40Chapter 3.3. --- Continuous-time NTF Generation --- p.46Chapter 3.4. --- Discrete-time Sigma-delta Modulator Modeling --- p.50Chapter 3.5. --- Continuous-time Sigma-delta Modulator Modeling --- p.52Chapter 3.6. --- Modeling of Nonidealities --- p.53Chapter 3.7. --- High Level Simulation Results --- p.58Chapter Chapter 4 --- Transistor Level Implementation of the Complex Modulator and Layout --- p.65Chapter 4.1. --- Introduction --- p.65Chapter 4.2. --- IF Input Complex Modulator --- p.65Chapter 4.3. --- High IR IF Input Complex Modulator Design --- p.67Chapter 4.4. --- System Design --- p.73Chapter 4.5. --- Building Blocks Design --- p.77Chapter 4.5.1. --- Transconductor Design --- p.77Chapter 4.5.2. --- RC Integrator Design --- p.87Chapter 4.5.3. --- Gm-C Integrator Design --- p.90Chapter 4.5.4. --- Voltage to Current Converter --- p.95Chapter 4.5.5. --- Current Comparator Design --- p.96Chapter 4.5.6. --- Dynamic Element Matching Design --- p.98Chapter 4.5.7. --- Mixer Design --- p.100Chapter 4.5.8. --- Clock Generator --- p.103Chapter 4.6. --- Transistor Level Simulation of the Design --- p.106Chapter 4.7. --- Layout of the Mixed Signal Design --- p.109Chapter 4.7.1. --- Layout Overview --- p.109Chapter 4.7.2. --- Capacitor layout --- p.110Chapter 4.7.3. --- Resistor Layout --- p.113Chapter 4.7.4. --- Power and Ground Routing --- p.114Chapter 4.7.5. --- OTA Layout --- p.115Chapter 4.7.6. --- Chip Layout --- p.117Chapter 4.8. --- PostLayout Simulation --- p.120Chapter 5. --- Chapter 5 Measurement Results and Improvement --- p.122Chapter 5.1. --- Introduction --- p.122Chapter 5.2. --- PCB Design --- p.123Chapter 5.3. --- Test Setup --- p.125Chapter 5.4. --- Measurement of SNR and IRR --- p.128Chapter 5.5. --- Discussion of the Chip Performance --- p.131Chapter 5.6. --- Design of Robust Sigma Delta Modulator --- p.139Chapter Chapter 6 --- Conclusion --- p.148Chapter 6.1. --- Conclusion --- p.148Chapter 6.2. --- Future Work --- p.150Bibliography --- p.151Appendix A Schematics of Building Blocks --- p.155Author's Publications --- p.15

    Sigma-Delta control of charge trapping in heterogeneous devices

    Get PDF
    Dielectric charging represents a major reliability issue in a variety of semiconductor devices. The accumulation of charge in dielectric layers of a device often alters its performance, affecting its circuital features and even reducing its effective lifetime. Although several contributions have been made in order to mitigate the undesired effects of charge trapping on circuit performance, dielectric charge trapping still remains an open reliability issue in several applications. The research work underlying this Thesis mainly focuses on the design, analysis and experimental validation of control strategies to compensate dielectric charging in heterogeneous devices. These control methods are based on the application of specifically designed voltage waveforms that produce complementary effects on the charge dynamics. Using sigma-delta loops, these controls allow to set and maintain, within some limits, the net trapped charge in the dielectric to desired levels that can be changed with time. This allows mitigating long-term reliability issues such as capacitance-voltage (C-V) shifts in MOS and MIM capacitors. Additionally, the bit streams generated by the control loops provide real-time information on the evolution of the trapped charge. The proposed controls also allow compensating the effects of the charge trapping due to external disturbances such as radiation. This has been demonstrated experimentally with MOS capacitors subjected to various types of ionizing radiation (X-rays and gamma rays) while a charge control is being applied. This approach opens up the possibility of establishing techniques for active compensation of radiation-induced charge in MOS structures as well as a new strategy for radiation sensing. A modeling strategy to characterize the dynamics of the dielectric charge in MOS capacitors is also presented. The diffusive nature of the charge trapping phenomena allows their behavioral characterization using Diffusive Representation tools. The experiments carried out demonstrate a very good matching between the predictions of the model and the experimental results obtained. The time variations in the charge dynamics due to changes in the volatges applied and/or due to external disturbances have been also investigated and modeled. Moreover, the charge dynamics of MOS capacitors under sigma-delta control is analyzed using the tools of Sliding Mode Controllers for an infinite sampling frequency approximation. A phenomenological analytical model is obtained which allows to predict and analyze the sequence of control signals. This model has been successfully validated with experimental data. Finally, the above control strategies are extended to other devices such as eMIM capacitors and perovskite solar cells. Preliminary results including open loop and closed loop control experiments are presented. These results demonstrate that the application of the controls allows to set and stabilize both the C-V characteristic of an eMIM capacitor and the current-voltage characteristic (J-V) of a perovskite solar cell.La carga atrapada en dieléctricos suele implicar un problema importante de fiabilidad en muchos dispositivos semiconductores. La acumulación de dicha carga, normalmente provocada por las tensiones aplicadas durante el uso del dispositivo, suele alterar el rendimiento de éste con el tiempo, afectar sus prestaciones a nivel de circuital e, incluso, reducir su vida útil. Aunque durante años se han realizado muchos trabajos para mitigar sus efectos no deseados, sobre todo a nivel circuital, la carga atrapada en dieléctricos sigue siendo un problema abierto que frena la aplicabilidad práctica de algunos dispositivos. El trabajo de investigación realizado en esta Tesis se centra principalmente en el diseño, análisis y validación experimental de estrategias de control para compensar la carga atrapada en dieléctricos de diversos tipos de dispositivos, incluyendo condensadores MOS, condensadores MIM fabricados con nanotecnología y dispositivos basados en perovskitas. Los controles propuestos se basan en utilizar formas de onda de tensión, específicamente diseñadas, que producen efectos complementarios en la dinámica de la carga. Mediante el uso de lazos sigma-delta, estos controles permiten establecer y mantener, dentro de unos límites, la carga neta atrapada en el dieléctrico a valores prefijados, que pueden cambiarse con el tiempo. Esto permite mitigar problemas de fiabilidad a largo plazo como por ejemplo las derivas de la curva capacidad-tensión (C-V) en condensadores MOS y MIM. Adicionalmente, las tramas de bits generadas por los lazos de control proporcionan información en tiempo real sobre la evolución de la carga. Los controles propuestos permiten también compensar los efectos de la carga atrapada en dieléctricos debida a perturbaciones externas como la radiación. Esto se ha demostrado experimentalmente con condesadores MOS sometidos a diversos tipos de radiación ionizante (rayos X y gamma) mientras se les aplicaba un control de carga. Este resultado abre la posibilidad tanto de establecer técnicas de compensación activa de carga inducida por radiación en estructuras MOS, como una nueva estrategia de sensado de radiación. Se presenta también una estrategia de modelado para caracterizar la dinámica de la carga dieléctrica en condensadores MOS. La naturaleza difusiva de los fenómenos de captura y eliminación de carga en dieléctricos permite caracterizar dichos fenómenos empleando herramientas de Representación Difusiva. Los experimentos realizados demuestran una muy buena correspondencia entre las predicciones del modelo y los resultados experimentales obtenidos. Se muestra también como las variaciones temporales de los modelos son debidas a cambios en las formas de onda de actuación del dispositivo y/o a perturbaciones externas. Además, la dinámica de carga en condensadores MOS bajo control sigma-delta se analiza utilizando herramientas de control en modo deslizante (SMC), considerando la aproximación de frecuencia de muestreo infinita. Con ello se obtiene un modelo analítico simplificado que permite predecir y analizar con éxito la secuencia de señales de control. Este modelo se ha validado satisfactoriamente con datos experimentales. Finalmente, las estrategias de control anteriores se han extendido a otros dispositivos susceptibles de sufrir efectos de carga atrapada que pueden afectar su fiabilidad. Así, se han llevado a cabo experimentos preliminares cuyos resultados demuestran que la aplicación de controles de carga permite controlar y estabilizar la característica C-V de un condensador eMIM y la característica corriente-tensión (J-V) de una célula solar basada en perovskitas.Postprint (published version

    Performance enhancement in the desing of amplifier and amplifier-less circuits in modern CMOS technologies.

    Get PDF
    In the context of nowadays CMOS technology downscaling and the increasing demand of high performance electronics by industry and consumers, analog design has become a major challenge. On the one hand, beyond others, amplifiers have traditionally been a key cell for many analog systems whose overall performance strongly depends on those of the amplifier. Consequently, still today, achieving high performance amplifiers is essential. On the other hand, due to the increasing difficulty in achieving high performance amplifiers in downscaled modern technologies, a different research line that replaces the amplifier by other more easily achievable cells appears: the so called amplifier-less techniques. This thesis explores and contributes to both philosophies. Specifically, a lowvoltage differential input pair is proposed, with which three multistage amplifiers in the state of art are designed, analysed and tested. Moreover, a structure for the implementation of differential switched capacitor circuits, specially suitable for comparator-based circuits, that features lower distortion and less noise than the classical differential structures is proposed, an, as a proof of concept, implemented in a ΔΣ modulator
    corecore