1,179 research outputs found

    Rectifier power converter for marine applications with compensating capacitor and boost converter stage

    Get PDF
    Environmental concerns and new emissions regulations, as well as increasing power needs for marine electrical grids, are pushing the development of more efficient power converters for shipboard power systems (SPS). The priorities for SPS design are reliability and power density especially in harsh operating conditions. Safety, space, and weight are of paramount importance requirements on a ship. One factor affecting the design of SPS is the high inductive impedance presented by ac generators, which requires high voltage ratios to compensate for. Therefore, ac-dc converters, sitting as they do between ac generators and the dc bus of the SPS, are identified as a point of potential development to improve the form factor and efficiency of SPS. A novel series capacitor compensation technique is proposed and applied to an ac-dc boost rectifier. Time-averaged equations are derived and compared to simulated waveforms generated using MATLAB/Simulink. Total harmonic distortion (THD) and power factor (PF) are calculated and measured. THD is found to be the limiting factor in designing the proposed compensator. The circuit is simulated in one and three phases, and several input-to-output voltage ratios are compared. To verify the practicality of the compensation method, a single-phase 1 kW rated prototype is implemented and practical results are presented and compared with the simulated waveforms. It is found that the compensation method can control THD to acceptable levels for a large range of inductive impedances, suggesting that this solution should be further developed and investigated for application in SPS.Environmental concerns and new emissions regulations, as well as increasing power needs for marine electrical grids, are pushing the development of more efficient power converters for shipboard power systems (SPS). The priorities for SPS design are reliability and power density especially in harsh operating conditions. Safety, space, and weight are of paramount importance requirements on a ship. One factor affecting the design of SPS is the high inductive impedance presented by ac generators, which requires high voltage ratios to compensate for. Therefore, ac-dc converters, sitting as they do between ac generators and the dc bus of the SPS, are identified as a point of potential development to improve the form factor and efficiency of SPS. A novel series capacitor compensation technique is proposed and applied to an ac-dc boost rectifier. Time-averaged equations are derived and compared to simulated waveforms generated using MATLAB/Simulink. Total harmonic distortion (THD) and power factor (PF) are calculated and measured. THD is found to be the limiting factor in designing the proposed compensator. The circuit is simulated in one and three phases, and several input-to-output voltage ratios are compared. To verify the practicality of the compensation method, a single-phase 1 kW rated prototype is implemented and practical results are presented and compared with the simulated waveforms. It is found that the compensation method can control THD to acceptable levels for a large range of inductive impedances, suggesting that this solution should be further developed and investigated for application in SPS

    Fatigue Behavior of a Cross-Ply Metal Matrix Composite at Elevated Temperature under Strain Controlled Mode

    Get PDF
    This research extends the existing knowledge of cross-ply metal matrix composites (MMC) to include fatigue behavior under strain-controlled fully reversed loading. This study investigated fatigue life, failure modes and damage mechanisms of the SCS-6-Ti-15-3, [O-9O]2s, MMC. The laminate was subjected to fully reversed fatigue at elevated temperature (427° C) at various strain levels. Stress, strain and modulus data were analyzed to characterize the macro-mechanical behavior of the composite. Microscopy and fractography were accomplished to identify and characterize the damage mechanisms at the microscopic level. Failure modes varied according to the maximum applied strain level showing either mixed mode (i.e. combination of both fiber and matrix dominated modes) or matrix dominated fatigue failures. As expected, higher strain loadings resulted in more ductility of the matrix at failure, evidenced by fracture surface features. For testing of the same composite laminate, the fatigue life under strain controlled mode slightly increased, compared to its load-controlled mode counterpart, using the effective strain range comparison basis. However, the respective fatigue life curves converged in the high cycle region, suggesting that the matrix dominated failure mode produces equivalent predicted fatigue lives for both control modes

    Single-Phase 13-Level Power Conditioning System for Peak Power Reduction of a High-Speed Railway Substation

    Get PDF
    The control and operation of a single-phase 13-level power conditioning system (PCS) for peak power reduction of a high-speed railway substation (HSRS) are proposed. This PCS is a single-phase 3100 V, 2 MVA 13-level H-bridge multi-level inverter structure. It has excellent power quality. It is easy to serialize by voltage. In addition, the DC bus power of each cell inverter is supplied by lithium-ion batteries. The generalized reduction gradient optimization algorithm based on past load pattern is applied to the power management system for peak power reduction of HSRS. The phase detector and power controller for the control of a single-phase PCS based on virtually coordinated axes using an all-pass filter are expected to be robust to external disturbances with fast response characteristics. This study also proposes an adapted select switch (ASS) method that can change the switching depending on the operation state of PCS and the state of charge (SOC) of the battery to minimize battery imbalance by controlling each cell inverter of the H-bridge. The validity of the proposed system was confirmed by PSiM simulation and experiments using a demonstration system of 6 MW PCS and 2.68 MWh batteries at one of Gyeongbu high-speed line substations in Korea. Document type: Articl

    Measurement of mechanical and thermophysical properties of dimensionally stable materials for space applications

    Get PDF
    Mechanical, thermal, and physical property test data was generated for as-fabricated advanced composite materials at room temperature (RT), -150 and 250 F. The results are documented of mechanical and thermophysical property tests of IM7/PEEK and discontinuous SiC/Al (particulate (p) and whisker (w) reinforced) composites which were tested at three different temperatures to determine the effect of temperature on material properties. The specific material systems tested were IM7/PEEK (0)8, (0, + or - 45, 90)s, (+ or - 30, 04)s, 25 vol. pct. (v/o) SiCp/Al, and 25 v/o SiCw/Al. RT material property results of IM7/PEEK were in good agreement with the predicted values, providing a measure of consolidation integrity attained during fabrication. Results of mechanical property tests indicated that modulus values at each test temperature were identical, whereas the strength (e.g., tensile, compressive, flexural, and shear) values were the same at -150 F, and RT, and gradually decreased as the test temperature was increased to 250 F. Similar trends in the strength values was also observed in discontinuous SiC/Al composites. These results indicate that the effect of temperature was more pronounced on the strength values than modulus values

    Modular multilevel converter with partially rated integrated energy storage suitable for frequency support and ancillary service provision

    Get PDF
    Grid scale Energy Storage Systems (ESSs) have received significant interest in recent years due to their ability to reduce/defer investment in transmission/distribution networks, as well their ability to act as primary reserve sources and provide emergency support to the transmission system. This paper investigates the dual-purposing of a HVDC-Scale Modular Multilevel Converter (MMC), allowing it to also act as an ESS. This has potential application in primary frequency response provision and other services such as de-coupled power oscillation damping. In the proposed topology a certain percentage of submodules (SM) within the MMC have their capacitor interfaced through a DC-DC converter to an Energy Storage Element (ESE), formed of a battery or ultracapacitor. By applying appropriate control, energy can be exchanged from the ESE to the main SM capacitor of each ESE-SM, and from there to either the AC or DC bus. It was found that for some operating points, an injection of circulating current was required to facilitate exchanging energy with the ESE-SMs. Analysis shows that, for instance, an additional power injection to AC or DC terminal of 0.1 p.u. (10%) is possible with only 4% of the SMs replaced by Full-Bridge ESE-SMs, and no additional SMs added

    Design and Control of Power Converters 2020

    Get PDF
    In this book, nine papers focusing on different fields of power electronics are gathered, all of which are in line with the present trends in research and industry. Given the generality of the Special Issue, the covered topics range from electrothermal models and losses models in semiconductors and magnetics to converters used in high-power applications. In this last case, the papers address specific problems such as the distortion due to zero-current detection or fault investigation using the fast Fourier transform, all being focused on analyzing the topologies of high-power high-density applications, such as the dual active bridge or the H-bridge multilevel inverter. All the papers provide enough insight in the analyzed issues to be used as the starting point of any research. Experimental or simulation results are presented to validate and help with the understanding of the proposed ideas. To summarize, this book will help the reader to solve specific problems in industrial equipment or to increase their knowledge in specific fields

    Coordination of mechanical DCCBs and temporary blocking of half bridge MMC

    Get PDF
    Peer reviewedPublisher PD

    Structural and Magnetic Phase Transitions in Manganese Arsenide Thin-Films Grown by Molecular Beam Epitaxy

    Get PDF
    Phase transitions play an important role in many fields of physics and engineering, and their study in bulk materials has a long tradition. Many of the experimental techniques involve measurements of thermodynamically extensive parameters. With the increasing technological importance of thin-film technology there is a pressing need to find new ways to study phase transitions at smaller length-scales, where the traditional methods are insufficient. In this regard, the phase transitions observed in thin-films of MnAs present interesting challenges. As a ferromagnetic material that can be grown epitaxially on a variety of technologically important substrates, MnAs is an interesting material for spintronics applications. In the bulk, the first order transition from the low temperature ferromagnetic α\alpha-phase to the β\beta-phase occurs at 313~K. The magnetic state of the β\beta-phase has remained controversial. A second order transition to the paramagnetic γ\gamma-phase takes place at 398~K. In thin-films, the anisotropic strain imposed by the substrate leads to the interesting phenomenon of coexistence of α\alpha- and β\beta-phases in a regular array of stripes over an extended temperature range. In this dissertation these phase transitions are studied in films grown by molecular beam epitaxy on GaAs (001). The films are confirmed to be of high structural quality and almost purely in the A0A_0 orientation. A diverse set of experimental techniques, germane to thin-film technology, is used to probe the properties of the film: Temperature-dependent X-ray diffraction and atomic-force microscopy (AFM), as well as magnetotransport give insights into the structural properties, while the anomalous Hall effect is used as a probe of magnetization during the phase transition. In addition, reflectance difference spectroscopy (RDS) is used as a sensitive probe of electronic structure. Inductively coupled plasma etching with BCl3_3 is demonstrated to be effective for patterning MnAs. We show that the evolution of electrical resistivity in the coexistence regime of α\alpha- and β\beta-phase can be understood in terms of a simple model. These measurements allow accurate extraction of the order-parameter phase fraction and thus permit us to study the hysteresis of the phase transition in detail. Major features in the hysteresis can be correlated to the ordering observed in the array of α\alpha- and β\beta-stripes. As the continuous ferromagnetic film breaks up into isolated stripes of α\alpha-phase, a hysteresis in the out-of-plane magnetization is detected from measurements of the anomalous Hall effect. The appearance of out-of-plane domains can be understood from simple shape-anisotropy arguments. Remarkably, an anomaly of the Hall effect at low fields persists far into the β\beta-phase. Signatures of the more elusive β\beta- to γ\gamma-transition are found in the temperature-dependence of resistivity, the out-of-plane lattice constant, and reflectance difference spectra. The transition temperature is significantly lowered compared to the bulk, consistent with the strained state of the material. The negative temperature coefficient of resistivity, as well as its anisotropic changes, lend support to the idea of an antiferromagnetic order within the β\beta-phase
    • …
    corecore