24 research outputs found

    A flexible architecture for plasma magnetic control in tokamak reactors

    Get PDF
    Plasma magnetic control is one of the core engineering issues to be tackled in a fusion device. Over the last years, model based approaches have been proposed to face this issue, proving their effectiveness and allowing to reduce the time span needed for control testing and validation. The first part of this work is intended to give an overview of the subject, from the historical milestones to the underlying physics; the most common techniques for tokamak plasmas electromagnetic modeling and control are also introduced and discussed. After this introduction, a general architecture for plasma magnetic control in tokamaks is proposed. Finally, the proposed solution is applied to the Experimental Advanced Superconducting Tokamak (EAST) tokamak, where a new plasma magnetic control architecture was developed and implemented during the 2016-2018 experimental campaigns, and to the Japan Torus-60 Super Advanced (JT-60SA) device, which is currently under construction in Japan

    A flexible architecture for plasma magnetic control in tokamak reactors

    Get PDF
    Plasma magnetic control is one of the core engineering issues to be tackled in a fusion device. Over the last years, model based approaches have been proposed to face this issue, proving their effectiveness and allowing to reduce the time span needed for control testing and validation. The first part of this work is intended to give an overview of the subject, from the historical milestones to the underlying physics; the most common techniques for tokamak plasmas electromagnetic modeling and control are also introduced and discussed. After this introduction, a general architecture for plasma magnetic control in tokamaks is proposed. Finally, the proposed solution is applied to the Experimental Advanced Superconducting Tokamak (EAST) tokamak, where a new plasma magnetic control architecture was developed and implemented during the 2016-2018 experimental campaigns, and to the Japan Torus-60 Super Advanced (JT-60SA) device, which is currently under construction in Japan

    DTT - Divertor Tokamak Test facility - Interim Design Report

    Get PDF
    The “Divertor Tokamak Test facility, DTT” is a milestone along the international program aimed at demonstrating – in the second half of this century – the feasibility of obtaining to commercial electricity from controlled thermonuclear fusion. DTT is a Tokamak conceived and designed in Italy with a broad international vision. The construction will be carried out in the ENEA Frascati site, mainly supported by national funds, complemented by EUROfusion and European incentive schemes for innovative investments. The project team includes more than 180 high-standard researchers from ENEA, CREATE, CNR, INFN, RFX and various universities. The volume, entitled DTT Interim Design Report (“Green Book” from the colour of the cover), briefly describes the status of the project, the planning of the design future activities and its organizational structure. The publication of the Green Book also provides an occasion for thorough discussions in the fusion community and a broad international collaboration on the DTT challenge

    Physics-model-based Optimization and Feedback Control of the Current Profile Dynamics in Fusion Tokamak Reactors

    Get PDF
    As the demand for energy continues to increase, the need to develop alternative energy sources to complement (and one day replace) conventional fossil fuels is becoming increasingly important. One such energy source is nuclear fusion, which has the potential to provide a clean source of energy and possesses an abundant fuel supply. However, due to the technological difficulty in creating the conditions necessary for controlled fusion to occur, nuclear fusion is not yet commercially viable. The tokamak is a device that utilizes magnetic fields to confine the reactants, which are in the plasma state, and it is one of the most promising devices capable of achieving controlled fusion. The ITER tokamak project is the next phase of tokamak development and will be the first tokamak reactor to explore the burning plasma (one with a significant amount of fusion reactions) operating regime.In order for ITER to meet its demanding goals, extensive research has been conducted to develop advanced tokamak operating scenarios characterized by a high fusion gain, good plasma confinement, magnetohydrodynamic stability, and a significant fraction of noninductively driven plasma current to maximize the plasma performance and potentially enable steady-state operation. As the dynamics of the tokamak plasma magnetic and kinetic states are highly coupled, distributed, nonlinear systems that exhibit many instabilities, it is extremely difficult to robustly achieve advanced operating scenarios. Therefore, active control of the plasma dynamics has significant potential to improve the ability to access advanced operating regimes. One of the key plasma properties investigated in the development of advanced scenarios is the plasma current profile because of its intimate relationship to plasma energy/particle transport and to plasma stability limits that are approached by increasing the plasma pressure. The plasma density and temperature profiles are also important parameters due to their close relationship to the amount of generated fusion power, to the total plasma stored energy, and to the amount of noninductive current drive. In tokamaks, the current and electron temperature profiles are coupled through resistive diffusion, noninductive current drive, and plasma energy/particle transport. As a result, integrated algorithms for current profile and electron temperature profile control will be necessary to maintain plasma stability, optimize plasma performance, and respond to changing power demand in ITER, and eventually a commercial, power producing tokamak reactor.In this work, model-based feedforward and feedback algorithms are developed to control the plasma current profile and thermal state dynamics with the goal of improving the ability to achieve robust tokamak operation. A first-principles-driven (FPD), physics-based approach is employed to develop models of the plasma response to the available actuators, which provides the freedom to handle the trade-off between the physics accuracy and the tractability for control design of the models. A numerical optimization algorithm to synthesize feedforward trajectories for the tokamak actuators that steer the plasma through the tokamak operating space to achieve a predefined target scenario (characterized by a desired current profile and total stored energy), subject to the plasma dynamics (described by the developed physics-based model), actuator constraints, and plasma state constraints, is developed. Additionally, robust feedback control algorithms for current profile, combined current profile + total stored energy, and simultaneous current profile + electron temperature profile control are synthesized for various tokamaks by embedding a FPD model into the control design process.Examples of the performance of the controllers in simulations (DIII-D, ITER, and TCV tokamaks) and DIII-D experiments are presented to illustrate the potential and versatility of the employed control methodology. The DIII-D experimental tests demonstrate the potential physics-model-based profile control has to provide a systematic approach for the development and robust sustainment of advanced scenarios. The ITER simulations demonstrate the ability to drive the current profile to a stationary target while simultaneously modulating the amount of fusion power that is generated. Finally, the TCV simulations demonstrate the ability to drive the current and electron temperature profiles to a self consistent target, as well as to maintain the current profile in a stationary condition while simultaneously modulating the electron temperature profile between equilibrium points

    Digital plasma control system and Alcasim simulation code for Alcator C-Mod

    Get PDF
    Includes bibliographical references (p. 105-107).Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Nuclear Engineering, 2005.Abstract The Alcator C-Mod control system was upgraded to digital architecture DPCS (Digital Plasma Control System). The main features of the digital system are the high flexibility, robustness and maintainability. The hardware consists of low-latency digitizers, a single processor Xeon server and DAC output cards. The software is a set of IDL routines. In the current version of the software, DPCS is emulating the PID controller of the previous control system Hybrid, but some advanced and adaptive features have already been implemented, for example the compensation of the input offsets. DPCS has been operating successfully since the beginning of the 2004-2005 experimental campaign. One of the advantages of a digital control system is that a simulator can be embedded in the system. We programmed a Matlab-Simulink simulator Alcasim for Alcator C-Mod. The simulator is a versatile tool to model the tokamak and the plasma, to interface with the database of the real experiments and to test new control algorithms, while running open loop and closed loop simulations. The powerful block-diagram language of Simulink allows to easily update the various components of the feedback loop, should the need arise. Preliminary results from the simulations of real shots are presented and discussed.by Marco Ferrara.S.M

    GPGPU application in fusion science

    Get PDF
    GPGPUs have firmly earned their reputation in HPC (High Performance Computing) as hardware for massively parallel computation. However their application in fusion science is quite marginal and not considered a mainstream approach to numerical problems. Computation advances have increased immensely over the last decade and continue to accelerate. GPGPU boards were always an alternative and exotic approach to problem solving and scientific programming, which was cultivated only by enthusiasts and specialized programmers. Today it is about 10 years, since the first fully programmable GPUs appeared on the market. And due to exponential growth in processing power over the years GPGPUs are not the alternative choice any more, but they became the main choice for big problem solving. Originally developed for and dominating in fields such as image and media processing, image rendering, video encoding/decoding, image scaling, stereo vision and pattern recognition GPGPUs are also becoming mainstream computation platforms in scientific fields such as signal processing, physics, finance and biology. This PhD contains solutions and approaches to two relevant problems for fusion and plasma science using GPGPU processing. First problem belongs to the realms of plasma and accelerator physics. I will present number of plasma simulations built on a PIC (Particle In Cell) method such as plasma sheath simulation, electron beam simulation, negative ion beam simulation and space charge compensation simulation. Second problem belongs to the realms of tomography and real-time control. I will present number of simulated tomographic plasma reconstructions of Fourier-Bessel type and their analysis all in real-time oriented approach, i.e. GPGPU based implementations are integrated into MARTe environment. MARTe is a framework for real-time application developed at JET (Joint European Torus) and used in several european fusion labs. These two sets of problems represent a complete spectrum of GPGPU operation capabilities. PIC based problems are large complex simulations operated as batch processes, which do not have a time constraint and operate on huge amounts of memory. While tomographic plasma reconstructions are online (realtime) processes, which have a strict latency/time constraints suggested by the time scales of real-time control and operate on relatively small amounts of memory. Such a variety of problems covers a very broad range of disciplines and fields of science: such as plasma physics, NBI (Neutral Beam Injector) physics, tokamak physics, parallel computing, iterative/direct matrix solvers, PIC method, tomography and so on. PhD thesis also includes an extended performance analysis of Nvidia GPU cards considering the applicability to the real-time control and real-time performance. In order to approach the aforementioned problems I as a PhD candidate had to gain knowledge in those relevant fields and build a vast range of practical skills such as: parallel/sequential CPU programming, GPU programming, MARTe programming, MatLab programming, IDL programming and Python programming

    Aeronautical engineering: A continuing bibliography with indexes (supplement 289)

    Get PDF
    This bibliography lists 792 reports, articles, and other documents introduced into the NASA scientific and technical information system in Mar. 1993. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics

    Aeronautical engineering: A continuing bibliography with indexes (supplement 286)

    Get PDF
    This bibliography lists 845 reports, articles, and other documents introduced into the NASA scientific and technical information system in Dec. 1992. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics

    Energy, Science and Technology 2015. The energy conference for scientists and researchers. Book of Abstracts, EST, Energy Science Technology, International Conference & Exhibition, 20-22 May 2015, Karlsruhe, Germany

    Get PDF
    We are pleased to present you this Book of Abstracts, which contains the submitted contributions to the "Energy, Science and Technology Conference & Exhibition EST 2015". The EST 2015 took place from May, 20th until May, 22nd 2015 in Karlsruhe, Germany, and brought together many different stakeholders, who do research or work in the broad field of "Energy". Renewable energies have to present a relevant share in a sustainable energy system and energy efficiency has to guarantee that conventional as well as renewable energy sources are transformed and used in a reasonable way. The adaption of existing infrastructure and the establishment of new systems, storages and grids are necessary to face the challenges of a changing energy sector. Those three main topics have been the fundament of the EST 2015, which served as a platform for national and international attendees to discuss and interconnect the various disciplines within energy research and energy business. We thank the authors, who summarised their high-quality and important results and experiences within one-paged abstracts and made the conference and this book possible. The abstracts of this book have been peer-reviewed by an international Scientific Programme Committee and are ordered by type of presentation (oral or poster) and topics. You can navigate by using either the table of contents (page 3) or the conference programme (starting page 4 for oral presentations and page 21 for posters respectively)
    corecore