257 research outputs found

    Compressive Sensing for MIMO Radar

    Full text link
    Multiple-input multiple-output (MIMO) radar systems have been shown to achieve superior resolution as compared to traditional radar systems with the same number of transmit and receive antennas. This paper considers a distributed MIMO radar scenario, in which each transmit element is a node in a wireless network, and investigates the use of compressive sampling for direction-of-arrival (DOA) estimation. According to the theory of compressive sampling, a signal that is sparse in some domain can be recovered based on far fewer samples than required by the Nyquist sampling theorem. The DOA of targets form a sparse vector in the angle space, and therefore, compressive sampling can be applied for DOA estimation. The proposed approach achieves the superior resolution of MIMO radar with far fewer samples than other approaches. This is particularly useful in a distributed scenario, in which the results at each receive node need to be transmitted to a fusion center for further processing

    Spatial Compressive Sensing for MIMO Radar

    Full text link
    We study compressive sensing in the spatial domain to achieve target localization, specifically direction of arrival (DOA), using multiple-input multiple-output (MIMO) radar. A sparse localization framework is proposed for a MIMO array in which transmit and receive elements are placed at random. This allows for a dramatic reduction in the number of elements needed, while still attaining performance comparable to that of a filled (Nyquist) array. By leveraging properties of structured random matrices, we develop a bound on the coherence of the resulting measurement matrix, and obtain conditions under which the measurement matrix satisfies the so-called isotropy property. The coherence and isotropy concepts are used to establish uniform and non-uniform recovery guarantees within the proposed spatial compressive sensing framework. In particular, we show that non-uniform recovery is guaranteed if the product of the number of transmit and receive elements, MN (which is also the number of degrees of freedom), scales with K(log(G))^2, where K is the number of targets and G is proportional to the array aperture and determines the angle resolution. In contrast with a filled virtual MIMO array where the product MN scales linearly with G, the logarithmic dependence on G in the proposed framework supports the high-resolution provided by the virtual array aperture while using a small number of MIMO radar elements. In the numerical results we show that, in the proposed framework, compressive sensing recovery algorithms are capable of better performance than classical methods, such as beamforming and MUSIC.Comment: To appear in IEEE Transactions on Signal Processin

    Measurement Matrix Design for Compressive Sensing Based MIMO Radar

    Full text link
    In colocated multiple-input multiple-output (MIMO) radar using compressive sensing (CS), a receive node compresses its received signal via a linear transformation, referred to as measurement matrix. The samples are subsequently forwarded to a fusion center, where an L1-optimization problem is formulated and solved for target information. CS-based MIMO radar exploits the target sparsity in the angle-Doppler-range space and thus achieves the high localization performance of traditional MIMO radar but with many fewer measurements. The measurement matrix is vital for CS recovery performance. This paper considers the design of measurement matrices that achieve an optimality criterion that depends on the coherence of the sensing matrix (CSM) and/or signal-to-interference ratio (SIR). The first approach minimizes a performance penalty that is a linear combination of CSM and the inverse SIR. The second one imposes a structure on the measurement matrix and determines the parameters involved so that the SIR is enhanced. Depending on the transmit waveforms, the second approach can significantly improve SIR, while maintaining CSM comparable to that of the Gaussian random measurement matrix (GRMM). Simulations indicate that the proposed measurement matrices can improve detection accuracy as compared to a GRMM

    Target Estimation in Colocated MIMO Radar via Matrix Completion

    Full text link
    We consider a colocated MIMO radar scenario, in which the receive antennas forward their measurements to a fusion center. Based on the received data, the fusion center formulates a matrix which is then used for target parameter estimation. When the receive antennas sample the target returns at Nyquist rate, and assuming that there are more receive antennas than targets, the data matrix at the fusion center is low-rank. When each receive antenna sends to the fusion center only a small number of samples, along with the sample index, the receive data matrix has missing elements, corresponding to the samples that were not forwarded. Under certain conditions, matrix completion techniques can be applied to recover the full receive data matrix, which can then be used in conjunction with array processing techniques, e.g., MUSIC, to obtain target information. Numerical results indicate that good target recovery can be achieved with occupancy of the receive data matrix as low as 50%.Comment: 5 pages, ICASSP 201

    Global optimization methods for localization in compressive sensing

    Get PDF
    The dissertation discusses compressive sensing and its applications to localization in multiple-input multiple-output (MIMO) radars. Compressive sensing is a paradigm at the intersection between signal processing and optimization. It advocates the sensing of “sparse” signals (i.e., represented using just a few terms from a basis expansion) by using a sampling rate much lower than that required by the Nyquist-Shannon sampling theorem (i.e., twice the highest frequency present in the signal of interest). Low-rate sampling reduces implementation’s constraints and translates into cost savings due to fewer measurements required. This is particularly true in localization applications when the number of measurements is commensurate to antenna elements. The theory of compressive sensing provides precise guidance on how the measurements should be acquired, and which optimization algorithm should be used for signal recovery. The first part of the dissertation addresses the application of compressive sensing for localization in the spatial domain, specifically direction of arrival (DOA), using MIMO radar. A sparse localization framework is proposed for a MIMO array in which transmit and receive elements are placed at random. This allows for a dramatic reduction in the number of elements needed, while still attaining performance comparable to that of a filled (Nyquist) array. By leveraging properties of structured random matrices, a bound on the coherence of the resulting measurement matrix is obtained, and conditions under which the measurement matrix satisfies the so-called isotropy property are detailed. The coherence and isotropy concepts are used to establish uniform and non-uniform recovery guarantees within the proposed spatial compressive sensing framework. In particular, it is shown that non-uniform recovery is guaranteed if the product of the number of transmit and receive elements, MN (which is also the number of degrees of freedom), scales with K (log G)2, where K is the number of targets and G is proportional to the array aperture and determines the angle resolution. In contrast with a filled virtual MIMO array where the product MN scales linearly with G, the logarithmic dependence on G in the proposed framework supports the high-resolution provided by the virtual array aperture while using a small number of MIMO radar elements. The second part of the dissertation focuses on the sparse recovery problem at the heart of compressive sensing. An algorithm, dubbed Multi-Branch Matching Pursuit (MBMP), is presented which combines three different paradigms: being a greedy method, it performs iterative signal support estimation; as a rank-aware method, it is able to exploit signal subspace information when multiple snapshots are available; and, as its name foretells, it possesses a multi-branch structure which allows it to trade-off performance (e.g., measurements) for computational complexity. A sufficient condition under which MBMP can recover a sparse signal is obtained. This condition, named MB-coherence, is met when the columns of the measurement matrix are sufficiently “incoherent” and when the signal-to-noise ratio is sufficiently high. The condition shows that successful recovery with MBMP is guaranteed for dictionaries which do not satisfy previously known conditions (e.g., coherence, cumulative coherence, or the Hanman relaxed coherence). Finally, by leveraging the MBMP algorithm, a framework for target detection from a set of compressive sensing radar measurements is established. The proposed framework does not require any prior information about the targets’ scene, and it is competitive with respect to state-of-the-art detection compressive sensing algorithms
    • …
    corecore