2,820 research outputs found

    A Finite-Time Cutting Plane Algorithm for Distributed Mixed Integer Linear Programming

    Get PDF
    Many problems of interest for cyber-physical network systems can be formulated as Mixed Integer Linear Programs in which the constraints are distributed among the agents. In this paper we propose a distributed algorithm to solve this class of optimization problems in a peer-to-peer network with no coordinator and with limited computation and communication capabilities. In the proposed algorithm, at each communication round, agents solve locally a small LP, generate suitable cutting planes, namely intersection cuts and cost-based cuts, and communicate a fixed number of active constraints, i.e., a candidate optimal basis. We prove that, if the cost is integer, the algorithm converges to the lexicographically minimal optimal solution in a finite number of communication rounds. Finally, through numerical computations, we analyze the algorithm convergence as a function of the network size.Comment: 6 pages, 3 figure

    Integrative Dynamic Reconfiguration in a Parallel Stream Processing Engine

    Get PDF
    Load balancing, operator instance collocations and horizontal scaling are critical issues in Parallel Stream Processing Engines to achieve low data processing latency, optimized cluster utilization and minimized communication cost respectively. In previous work, these issues are typically tackled separately and independently. We argue that these problems are tightly coupled in the sense that they all need to determine the allocations of workloads and migrate computational states at runtime. Optimizing them independently would result in suboptimal solutions. Therefore, in this paper, we investigate how these three issues can be modeled as one integrated optimization problem. In particular, we first consider jobs where workload allocations have little effect on the communication cost, and model the problem of load balance as a Mixed-Integer Linear Program. Afterwards, we present an extended solution called ALBIC, which support general jobs. We implement the proposed techniques on top of Apache Storm, an open-source Parallel Stream Processing Engine. The extensive experimental results over both synthetic and real datasets show that our techniques clearly outperform existing approaches

    Optimized Cell Planning for Network Slicing in Heterogeneous Wireless Communication Networks

    Full text link
    We propose a cell planning scheme to maximize the resource efficiency of a wireless communication network while considering quality-of-service requirements imposed by different mobile services. In dense and heterogeneous cellular 5G networks, the available time-frequency resources are orthogonally partitioned among different slices, which are serviced by the cells. The proposed scheme achieves a joint optimization of the resource distribution between network slices, the allocation of cells to operate on different slices, and the allocation of users to cells. Since the original problem formulation is computationally intractable, we propose a convex inner approximation. Simulations show that the proposed approach optimizes the resource efficiency and enables a service-centric network design paradigm.Comment: This article has been accepted for publication in a future issue of the IEEE Communications Letters, https://ieeexplore.ieee.org/document/8368293, (c) 2018 IEE
    • …
    corecore