1,002 research outputs found

    Human Motion Trajectory Prediction: A Survey

    Full text link
    With growing numbers of intelligent autonomous systems in human environments, the ability of such systems to perceive, understand and anticipate human behavior becomes increasingly important. Specifically, predicting future positions of dynamic agents and planning considering such predictions are key tasks for self-driving vehicles, service robots and advanced surveillance systems. This paper provides a survey of human motion trajectory prediction. We review, analyze and structure a large selection of work from different communities and propose a taxonomy that categorizes existing methods based on the motion modeling approach and level of contextual information used. We provide an overview of the existing datasets and performance metrics. We discuss limitations of the state of the art and outline directions for further research.Comment: Submitted to the International Journal of Robotics Research (IJRR), 37 page

    Computational intelligence approaches to robotics, automation, and control [Volume guest editors]

    Get PDF
    No abstract available

    Attacking the V:On the resiliency of adaptive-horizon MPC

    Get PDF
    Inspired by the emerging problem of CPS security, we introduce the concept of controller-attacker games. A controller-attacker game is a two-player stochastic game, where the two players, a controller and an attacker, have antagonistic objectives. A controller-attacker game is formulated in terms of a Markov Decision Process (MDP), with the controller and the attacker jointly determining the MDP’s transition probabilities. We also introduce the class of controller-attacker games we call V-formation games, where the goal of the controller is to maneuver the plant (a simple model of flocking dynamics) into a V-formation, and the goal of the attacker is to prevent the controller from doing so. Controllers in V-formation games utilize a new formulation of model-predictive control we have developed called Adaptive-Horizon MPC (AMPC), giving them extraordinary power: we prove that under certain controllability conditions, an AMPC controller can attain V-formation with probability 1. We evaluate AMPC’s performance on V-formation games using statistical model checking. Our experiments demonstrate that (a) as we increase the power of the attacker, the AMPC controller adapts by suitably increasing its horizon, and thus demonstrates resiliency to a variety of attacks; and (b) an intelligent attacker can significantly outperform its naive counterpart

    Cooperative Carrying Control for Mobile Robots in Indoor Scenario

    Get PDF
    openIn recent years, there has been a growing interest in designing multi-robot systems to provide cost-effective, fault-tolerant and reliable solutions to a variety of automated applications. In particular, from an industrial perspective, cooperative carrying techniques based on Reinforcement Learning (RL) gained a strong interest. Compared to a single robot system, this approach improves the system’s robustness and manipulation dexterity in the transportation of large objects. However, in the current state of the art, the environments’ dynamism and re-training procedure represent a considerable limitation for most of the existing cooperative carrying RL-based solutions. In this thesis, we employ the Value Propagation Networks (VPN) algorithm for cooperative multi-robot transport scenarios. We extend and test the Delta-Q cooperation metric to V-value-based agents, and we investigate path generation algorithms and trajectory tracking controllers for differential drive robots. Moreover, we explore localization algorithms in order to take advantage of range sensors and mitigate the drift errors of wheel odometry, and we conduct experiments to derive key performance indicators of range sensors' precision. Lastly, we perform realistic industrial indoor simulations using Robot Operating System (ROS) and Gazebo 3D visualization tool, including physical objects and 6G communication constraints. Our results showed that the proposed VPN-based algorithm outperforms the current state-of-the-art since the trajectory planning and dynamic obstacle avoidance are performed in real-time, without re-training the model, and under constant 6G network coverage.In recent years, there has been a growing interest in designing multi-robot systems to provide cost-effective, fault-tolerant and reliable solutions to a variety of automated applications. In particular, from an industrial perspective, cooperative carrying techniques based on Reinforcement Learning (RL) gained a strong interest. Compared to a single robot system, this approach improves the system’s robustness and manipulation dexterity in the transportation of large objects. However, in the current state of the art, the environments’ dynamism and re-training procedure represent a considerable limitation for most of the existing cooperative carrying RL-based solutions. In this thesis, we employ the Value Propagation Networks (VPN) algorithm for cooperative multi-robot transport scenarios. We extend and test the Delta-Q cooperation metric to V-value-based agents, and we investigate path generation algorithms and trajectory tracking controllers for differential drive robots. Moreover, we explore localization algorithms in order to take advantage of range sensors and mitigate the drift errors of wheel odometry, and we conduct experiments to derive key performance indicators of range sensors' precision. Lastly, we perform realistic industrial indoor simulations using Robot Operating System (ROS) and Gazebo 3D visualization tool, including physical objects and 6G communication constraints. Our results showed that the proposed VPN-based algorithm outperforms the current state-of-the-art since the trajectory planning and dynamic obstacle avoidance are performed in real-time, without re-training the model, and under constant 6G network coverage

    Punctual versus continuous auction coordination for multi-robot and multi-task topological navigation

    Get PDF
    International audienceThis paper addresses the interest of using Punctual versus Continuous coordination for mobile multi-robot systems where robots use auction sales to allocate tasks between them and to compute their policies in a distributed way. In Continuous coordination, one task at a time is assigned and performed per robot. In Punctual coordination, all the tasks are distributed in Rendezvous phases during the mission execution. However , tasks allocation problem grows exponentially with the number of tasks. The proposed approach consists in two aspects: (1) a control architecture based on topo-logical representation of the environment which reduces the planning complexity and (2) a protocol based on Sequential Simultaneous Auctions (SSA) to coordinate Robots' policies. The policies are individually computed using Markov Decision Processes oriented by several goal-task positions to reach. Experimental results on both real robots and simulation describe an evaluation of the proposed robot architecture coupled wih the SSA protocol. The efficiency of missions' execution is empirically evaluated regarding continuous planning

    Learning to reach and reaching to learn: a unified approach to path planning and reactive control through reinforcement learning

    Get PDF
    The next generation of intelligent robots will need to be able to plan reaches. Not just ballistic point to point reaches, but reaches around things such as the edge of a table, a nearby human, or any other known object in the robot’s workspace. Planning reaches may seem easy to us humans, because we do it so intuitively, but it has proven to be a challenging problem, which continues to limit the versatility of what robots can do today. In this document, I propose a novel intrinsically motivated RL system that draws on both Path/Motion Planning and Reactive Control. Through Reinforcement Learning, it tightly integrates these two previously disparate approaches to robotics. The RL system is evaluated on a task, which is as yet unsolved by roboticists in practice. That is to put the palm of the iCub humanoid robot on arbitrary target objects in its workspace, start- ing from arbitrary initial configurations. Such motions can be generated by planning, or searching the configuration space, but this typically results in some kind of trajectory, which must then be tracked by a separate controller, and such an approach offers a brit- tle runtime solution because it is inflexible. Purely reactive systems are robust to many problems that render a planned trajectory infeasible, but lacking the capacity to search, they tend to get stuck behind constraints, and therefore do not replace motion planners. The planner/controller proposed here is novel in that it deliberately plans reaches without the need to track trajectories. Instead, reaches are composed of sequences of reactive motion primitives, implemented by my Modular Behavioral Environment (MoBeE), which provides (fictitious) force control with reactive collision avoidance by way of a realtime kinematic/geometric model of the robot and its workspace. Thus, to the best of my knowledge, mine is the first reach planning approach to simultaneously offer the best of both the Path/Motion Planning and Reactive Control approaches. By controlling the real, physical robot directly, and feeling the influence of the con- straints imposed by MoBeE, the proposed system learns a stochastic model of the iCub’s configuration space. Then, the model is exploited as a multiple query path planner to find sensible pre-reach poses, from which to initiate reaching actions. Experiments show that the system can autonomously find practical reaches to target objects in workspace and offers excellent robustness to changes in the workspace configuration as well as noise in the robot’s sensory-motor apparatus
    • …
    corecore