11 research outputs found

    Performance analysis of EXP/PF and M-LWDF in downlink 3GPP LTE system

    Full text link
    This paper investigates the performance of exponential/proportional fair (EXP/PF) and maximum-largest weighted delay first (M-LWDF) scheduling algorithms in the third generation partnership project long term evolution (3GPP LTE) providing packet-switched multimedia services. It, then, identifies a suitable packet scheduling algorithm on a basis of their performance evaluation. The performance evaluation is conducted in terms of system throughput, average real time (RT) and non-real time (NRT) throughput, packet loss for RT service and fairness for NRT service. A video streaming traffic is used to model the RT service, while a web-browsing traffic is modelled for NRT service. Simulation results show that at lower load M-LWDF algorithm provides better performance than EXP/PF while as the load increases the EXP/PF gives better performance. ©2009 IEEE

    Performance of Well Known Packet Scheduling Algorithms in the Downlink 3GPP LTE System

    Full text link
    This paper investigates the performance of well known packet scheduling algorithms developed for single carrier wireless systems from a real time video streaming perspective. The performance evaluation is conducted using the downlink third generation partnership project long term evolution (3GPP LTE) system as the simulation platform. This paper contributes to the identification of a suitable packet scheduling algorithm for use in the downlink 3GPP LTE system supporting video streaming services. Simulation results show that, in the downlink 3GPP LTE system supporting video streaming services, maximum-largest weighted delay first (M-LWDF) algorithm outperforms other packet scheduling algorithms by providing a higher system throughput, supporting a higher number of users and guaranteeing fairness at a satisfactory level

    Delay-Prioritized Scheduling (DPS) for real time traffic in 3GPP LTE system

    Full text link
    Given that the co-existence of multimedia applications will be a norm in the future wireless systems, their quality of service (QoS) requirements need to be guaranteed. This has imposed new challenges in the design of packet scheduling algorithms in these systems. To address those challenges, a new packet scheduling algorithm for real time (RT) traffic in downlink third generation partnership project long term evolution (3GPP LTE) system is proposed in this paper. The proposed algorithm utilizes each user's packet delay information and its instantaneous downlink channel conditions when making scheduling decisions. Simulation results show that the proposed algorithm outperforms opportunistic scheduling and maximum-largest weighted delay first algorithms by maximizing system throughput and satisfying the QoS requirements of the RT traffic. ©2010 IEEE

    Downlink Resource Scheduling in an LTE System

    Get PDF
    The problem of allocating resources to multiple users on the downlink of a Long Term Evolution (LTE) cellular communication system is discussed. An optimal (maximum throughput) multiuser scheduler is proposed and its performance is evaluated. Numerical results show that the system performance improves with increasing correlation among OFDMA subcarriers. It is found that a limited amount of feedback information can provide a relatively good performance. A sub-optimal scheduler with a lower computational complexity is also proposed, and shown to provide good performance. The sub-optimal scheme is especially attractive when the number of users is large, as the complexity of the optimal scheme may then be unacceptably high in many practical situations. The performance of a scheduler which addresses fairness among users is also presented

    Sustainable scheduling policies for radio access networks based on LTE technology

    Get PDF
    A thesis submitted to the University of Bedfordshire in partial fulfilment of the requirements for the degree of Doctor of PhilosophyIn the LTE access networks, the Radio Resource Management (RRM) is one of the most important modules which is responsible for handling the overall management of radio resources. The packet scheduler is a particular sub-module which assigns the existing radio resources to each user in order to deliver the requested services in the most efficient manner. Data packets are scheduled dynamically at every Transmission Time Interval (TTI), a time window used to take the user’s requests and to respond them accordingly. The scheduling procedure is conducted by using scheduling rules which select different users to be scheduled at each TTI based on some priority metrics. Various scheduling rules exist and they behave differently by balancing the scheduler performance in the direction imposed by one of the following objectives: increasing the system throughput, maintaining the user fairness, respecting the Guaranteed Bit Rate (GBR), Head of Line (HoL) packet delay, packet loss rate and queue stability requirements. Most of the static scheduling rules follow the sequential multi-objective optimization in the sense that when the first targeted objective is satisfied, then other objectives can be prioritized. When the targeted scheduling objective(s) can be satisfied at each TTI, the LTE scheduler is considered to be optimal or feasible. So, the scheduling performance depends on the exploited rule being focused on particular objectives. This study aims to increase the percentage of feasible TTIs for a given downlink transmission by applying a mixture of scheduling rules instead of using one discipline adopted across the entire scheduling session. Two types of optimization problems are proposed in this sense: Dynamic Scheduling Rule based Sequential Multi-Objective Optimization (DSR-SMOO) when the applied scheduling rules address the same objective and Dynamic Scheduling Rule based Concurrent Multi-Objective Optimization (DSR-CMOO) if the pool of rules addresses different scheduling objectives. The best way of solving such complex optimization problems is to adapt and to refine scheduling policies which are able to call different rules at each TTI based on the best matching scheduler conditions (states). The idea is to develop a set of non-linear functions which maps the scheduler state at each TTI in optimal distribution probabilities of selecting the best scheduling rule. Due to the multi-dimensional and continuous characteristics of the scheduler state space, the scheduling functions should be approximated. Moreover, the function approximations are learned through the interaction with the RRM environment. The Reinforcement Learning (RL) algorithms are used in this sense in order to evaluate and to refine the scheduling policies for the considered DSR-SMOO/CMOO optimization problems. The neural networks are used to train the non-linear mapping functions based on the interaction among the intelligent controller, the LTE packet scheduler and the RRM environment. In order to enhance the convergence in the feasible state and to reduce the scheduler state space dimension, meta-heuristic approaches are used for the channel statement aggregation. Simulation results show that the proposed aggregation scheme is able to outperform other heuristic methods. When the aggregation scheme of the channel statements is exploited, the proposed DSR-SMOO/CMOO problems focusing on different objectives which are solved by using various RL approaches are able to: increase the mean percentage of feasible TTIs, minimize the number of TTIs when the RL approaches punish the actions taken TTI-by-TTI, and minimize the variation of the performance indicators when different simulations are launched in parallel. This way, the obtained scheduling policies being focused on the multi-objective criteria are sustainable. Keywords: LTE, packet scheduling, scheduling rules, multi-objective optimization, reinforcement learning, channel, aggregation, scheduling policies, sustainable

    Mobile and Wireless Communications

    Get PDF
    Mobile and Wireless Communications have been one of the major revolutions of the late twentieth century. We are witnessing a very fast growth in these technologies where mobile and wireless communications have become so ubiquitous in our society and indispensable for our daily lives. The relentless demand for higher data rates with better quality of services to comply with state-of-the art applications has revolutionized the wireless communication field and led to the emergence of new technologies such as Bluetooth, WiFi, Wimax, Ultra wideband, OFDMA. Moreover, the market tendency confirms that this revolution is not ready to stop in the foreseen future. Mobile and wireless communications applications cover diverse areas including entertainment, industrialist, biomedical, medicine, safety and security, and others, which definitely are improving our daily life. Wireless communication network is a multidisciplinary field addressing different aspects raging from theoretical analysis, system architecture design, and hardware and software implementations. While different new applications are requiring higher data rates and better quality of service and prolonging the mobile battery life, new development and advanced research studies and systems and circuits designs are necessary to keep pace with the market requirements. This book covers the most advanced research and development topics in mobile and wireless communication networks. It is divided into two parts with a total of thirty-four stand-alone chapters covering various areas of wireless communications of special topics including: physical layer and network layer, access methods and scheduling, techniques and technologies, antenna and amplifier design, integrated circuit design, applications and systems. These chapters present advanced novel and cutting-edge results and development related to wireless communication offering the readers the opportunity to enrich their knowledge in specific topics as well as to explore the whole field of rapidly emerging mobile and wireless networks. We hope that this book will be useful for students, researchers and practitioners in their research studies

    A Task Offloading Framework for Energy Saving on Mobile Devices using Cloud Computing

    Get PDF
    Over the last decade, mobile devices have become popular among people, and their number is ever growing because of the computing functionality they offer beyond primary voice communication. However, mobile devices are unable to accommodate most of the computing demand as long as they suffer the limited energy supply caused by the capacity of their small battery to store only a relatively small amount of energy. The literature describes several specialist techniques proposed in academia and industry that save the mobile device energy and solve this problem to some extent but not satisfactorily. Task offloading from mobile devices to cloud computing is a promising technique for tackling the problem especially with the emergence of high-speed wireless networks and the ubiquitous resources from the cloud computing. Since task offloading is in its nascent age, it lacks evaluation and development in-depth studies. In this dissertation, we proposed an offloading framework to make task offloading possible to save energy for mobile devices. We achieved a great deal of progress toward developing a realistic offloading framework. First, we examined the feasibility of exploiting the offloading technique to save mobile device energy using the cloud as the place to execute the task instead of executing it on the mobile device. Our evaluation study reveals that the offloading does not always save energy; in cases where the energy for the computation is less than the energy for communication no energy is saved. Therefore, the need for the offloading decision is vital to make the offloading beneficial. Second, we developed mathematical models for the energy consumption of a mobile device and its applications. These models were then used to develop mathematical models that estimate the energy consumption on the networking and the computing activities at the application level. We modelled the energy consumption of the networking activity for the Transmission Control Protocol (TCP) over Wireless Local Area Network (WLAN), the Third Generation (3G), and the Fourth Generation (4G) of mobile telecommunication networks. Furthermore, we modelled the energy consumption of the computing activity for the mobile multi-core Central Processing Unit (CPU) and storage unit. Third, we identified and classified the system parameters affecting the offloading decision and built our offloading framework based on them. In addition, we implemented and validated the proposed framework experimentally using a real mobile device, cloud, and application. The experimental results reveal that task offloading is beneficial for mobile devices given that in some cases it saves more than 70% of the energy required to execute a task. Additionally, our energy models accurately estimate the energy consumption for the networking and computing activities. This accuracy allows the offloading framework to make the correct decision as to whether or not offloading a given task saves energy. Our framework is built to be applicable to modern mobile devices and expandable by considering all system parameters that have impact on the offloading decision. In fact, the experimental validation proves that our framework is practical to real life scenarios. This framework gives researchers in the field useful tools to design energy efficient offloading systems for the coming years when the offloading will be common.4 month

    Recent Trends in Communication Networks

    Get PDF
    In recent years there has been many developments in communication technology. This has greatly enhanced the computing power of small handheld resource-constrained mobile devices. Different generations of communication technology have evolved. This had led to new research for communication of large volumes of data in different transmission media and the design of different communication protocols. Another direction of research concerns the secure and error-free communication between the sender and receiver despite the risk of the presence of an eavesdropper. For the communication requirement of a huge amount of multimedia streaming data, a lot of research has been carried out in the design of proper overlay networks. The book addresses new research techniques that have evolved to handle these challenges
    corecore