4,313 research outputs found

    Orthogonal Frequency Division Multiplexed Waveform Effects on Passive Bistatic Radar

    Get PDF
    Communication waveforms act as signals of opportunity for passive radars. However, these signals of opportunity suffer from range-Doppler processing losses due to their high range sidelobes and pulse-diverse waveform aspects. Signals such as the long term evolution (LTE) encode information within the phase and amplitude of the waveform. This research explores aspects of the LTE, such as the encoding scheme and bandwidth modes on passive bistatic Doppler radar. Signal space-time adaptive processing (STAP) performance is evaluated and parameters are compared with the signal to interference-plus-noise ratio (SINR) metric

    Modeling Maritime Radar Scattering

    Get PDF
    The focus of this project was the design and implementation of a maritime radar simulation developed in MATLAB to aid in the understanding of the effects of ocean waves on radar. The purpose of this simulation is to be used as a toolbox for the future development of detection algorithms for small boats on or near the ocean surface. The team delivered three simulations to the MIT Lincoln Laboratory staff. The first simulation focused on the integration of a one-dimensional ocean model and a chirp radar model. The second deliverable extended the first simulation to include a two-dimensional ocean model and a boat wake model. The third simulation introduced a phased array radar model. These simulations were verified against publicly available data and models

    Emerging Approaches for THz Array Imaging: A Tutorial Review and Software Tool

    Full text link
    Accelerated by the increasing attention drawn by 5G, 6G, and Internet of Things applications, communication and sensing technologies have rapidly evolved from millimeter-wave (mmWave) to terahertz (THz) in recent years. Enabled by significant advancements in electromagnetic (EM) hardware, mmWave and THz frequency regimes spanning 30 GHz to 300 GHz and 300 GHz to 3000 GHz, respectively, can be employed for a host of applications. The main feature of THz systems is high-bandwidth transmission, enabling ultra-high-resolution imaging and high-throughput communications; however, challenges in both the hardware and algorithmic arenas remain for the ubiquitous adoption of THz technology. Spectra comprising mmWave and THz frequencies are well-suited for synthetic aperture radar (SAR) imaging at sub-millimeter resolutions for a wide spectrum of tasks like material characterization and nondestructive testing (NDT). This article provides a tutorial review of systems and algorithms for THz SAR in the near-field with an emphasis on emerging algorithms that combine signal processing and machine learning techniques. As part of this study, an overview of classical and data-driven THz SAR algorithms is provided, focusing on object detection for security applications and SAR image super-resolution. We also discuss relevant issues, challenges, and future research directions for emerging algorithms and THz SAR, including standardization of system and algorithm benchmarking, adoption of state-of-the-art deep learning techniques, signal processing-optimized machine learning, and hybrid data-driven signal processing algorithms...Comment: Submitted to Proceedings of IEE

    Novel Hybrid-Learning Algorithms for Improved Millimeter-Wave Imaging Systems

    Full text link
    Increasing attention is being paid to millimeter-wave (mmWave), 30 GHz to 300 GHz, and terahertz (THz), 300 GHz to 10 THz, sensing applications including security sensing, industrial packaging, medical imaging, and non-destructive testing. Traditional methods for perception and imaging are challenged by novel data-driven algorithms that offer improved resolution, localization, and detection rates. Over the past decade, deep learning technology has garnered substantial popularity, particularly in perception and computer vision applications. Whereas conventional signal processing techniques are more easily generalized to various applications, hybrid approaches where signal processing and learning-based algorithms are interleaved pose a promising compromise between performance and generalizability. Furthermore, such hybrid algorithms improve model training by leveraging the known characteristics of radio frequency (RF) waveforms, thus yielding more efficiently trained deep learning algorithms and offering higher performance than conventional methods. This dissertation introduces novel hybrid-learning algorithms for improved mmWave imaging systems applicable to a host of problems in perception and sensing. Various problem spaces are explored, including static and dynamic gesture classification; precise hand localization for human computer interaction; high-resolution near-field mmWave imaging using forward synthetic aperture radar (SAR); SAR under irregular scanning geometries; mmWave image super-resolution using deep neural network (DNN) and Vision Transformer (ViT) architectures; and data-level multiband radar fusion using a novel hybrid-learning architecture. Furthermore, we introduce several novel approaches for deep learning model training and dataset synthesis.Comment: PhD Dissertation Submitted to UTD ECE Departmen

    Synthetic Aperture Radar Imaging

    Get PDF
    Simulation programs are used to locate the positions of the input target points and generate a 2D SAR image with the Range Migration Algorithm. Using the same methodology, we can create a scene geometry using the concept of Point cloud and run the simulation program to generate raw SAR data

    Parallel MATALAB Techniques

    Get PDF
    In this chapter, we show why parallel MATLAB is useful, provide a comparison of the different parallel MATLAB choices, and describe a number of applications in Signal and Image Processing: Audio Signal Processing, Synthetic Aperture Radar (SAR) Processing and Superconducting Quantum Interference Filters (SQIFs). Each of these applications have been parallelized using different methods (Task parallel and Data parallel techniques). The applications presented may be considered representative of type of problems faced by signal and image processing researchers. This chapter will also strive to serve as a guide to new signal and image processing parallel programmers, by suggesting a parallelization strategy that can be employed when developing a general parallel algorithm. The objective of this chapter is to help signal and image processing algorithm developers understand the advantages of using parallel MATLAB to tackle larger problems while staying within the powerful environment of MATLAB
    • …
    corecore