14 research outputs found

    Contributions on secretary problems, independent sets of rectangles and related problems

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mathematics, 2011.Cataloged from PDF version of thesis.Includes bibliographical references (p. 187-198).We study three problems arising from different areas of combinatorial optimization. We first study the matroid secretary problem, which is a generalization proposed by Babaioff, Immorlica and Kleinberg of the classical secretary problem. In this problem, the elements of a given matroid are revealed one by one. When an element is revealed, we learn information about its weight and decide to accept it or not, while keeping the accepted set independent in the matroid. The goal is to maximize the expected weight of our solution. We study different variants for this problem depending on how the elements are presented and on how the weights are assigned to the elements. Our main result is the first constant competitive algorithm for the random-assignment random-order model. In this model, a list of hidden nonnegative weights is randomly assigned to the elements of the matroid, which are later presented to us in uniform random order, independent of the assignment. The second problem studied is the jump number problem. Consider a linear extension L of a poset P. A jump is a pair of consecutive elements in L that are not comparable in P. Finding a linear extension minimizing the number of jumps is NP-hard even for chordal bipartite posets. For the class of posets having two directional orthogonal ray comparability graphs, we show that this problem is equivalent to finding a maximum independent set of a well-behaved family of rectangles. Using this, we devise combinatorial and LP-based algorithms for the jump number problem, extending the class of bipartite posets for which this problem is polynomially solvable and improving on the running time of existing algorithms for certain subclasses. The last problem studied is the one of finding nonempty minimizers of a symmetric submodular function over any family of sets closed under inclusion. We give an efficient O(ns)-time algorithm for this task, based on Queyranne's pendant pair technique for minimizing unconstrained symmetric submodular functions. We extend this algorithm to report all inclusion-wise nonempty minimal minimizers under hereditary constraints of slightly more general functions.by José Antonio Soto.Ph.D

    LIPIcs, Volume 274, ESA 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 274, ESA 2023, Complete Volum

    LIPIcs, Volume 248, ISAAC 2022, Complete Volume

    Get PDF
    LIPIcs, Volume 248, ISAAC 2022, Complete Volum

    Advances in Graph-Cut Optimization: Multi-Surface Models, Label Costs, and Hierarchical Costs

    Get PDF
    Computer vision is full of problems that are elegantly expressed in terms of mathematical optimization, or energy minimization. This is particularly true of low-level inference problems such as cleaning up noisy signals, clustering and classifying data, or estimating 3D points from images. Energies let us state each problem as a clear, precise objective function. Minimizing the correct energy would, hypothetically, yield a good solution to the corresponding problem. Unfortunately, even for low-level problems we are confronted by energies that are computationally hard—often NP-hard—to minimize. As a consequence, a rather large portion of computer vision research is dedicated to proposing better energies and better algorithms for energies. This dissertation presents work along the same line, specifically new energies and algorithms based on graph cuts. We present three distinct contributions. First we consider biomedical segmentation where the object of interest comprises multiple distinct regions of uncertain shape (e.g. blood vessels, airways, bone tissue). We show that this common yet difficult scenario can be modeled as an energy over multiple interacting surfaces, and can be globally optimized by a single graph cut. Second, we introduce multi-label energies with label costs and provide algorithms to minimize them. We show how label costs are useful for clustering and robust estimation problems in vision. Third, we characterize a class of energies with hierarchical costs and propose a novel hierarchical fusion algorithm with improved approximation guarantees. Hierarchical costs are natural for modeling an array of difficult problems, e.g. segmentation with hierarchical context, simultaneous estimation of motions and homographies, or detecting hierarchies of patterns

    LIPIcs, Volume 261, ICALP 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 261, ICALP 2023, Complete Volum

    27th Annual European Symposium on Algorithms: ESA 2019, September 9-11, 2019, Munich/Garching, Germany

    Get PDF
    corecore