465 research outputs found

    Throughput optimization for data collection in wireless sensor networks

    Get PDF
    Wireless sensor networks are widely used in many application domains in recent years. Data collection is a fundamental function provided by wireless sensor networks. How to efficiently collect sensing data from all sensor nodes is critical to the performance of sensor networks. In this dissertation, we aim to study the theoretical limits of data collection in a TDMA-based sensor network in terms of possible and achievable maximum capacity. Various communication scenarios are considered in our analysis, such as with a single sink or multiple sinks, randomly-deployed or arbitrarily- deployed sensors, and different communication models. For both randomly-deployed and arbitrarily-deployed sensor networks, an efficient collection algorithm has been proposed under protocol interference model and physical interference model respec- tively. We can prove that its performance is within a constant factor of the optimal for both single sink and regularly-deployed multiple sinks cases. We also study the capacity bounds of data collection under a general graph model, where two nearby nodes may be unable to communicate due to barriers or path fading, and discuss per- formance implications. In addition, we further discuss the problem of data collection capacity under Gaussian channel model

    Towards a Simple Relationship to Estimate the Capacity of Static and Mobile Wireless Networks

    Full text link
    Extensive research has been done on studying the capacity of wireless multi-hop networks. These efforts have led to many sophisticated and customized analytical studies on the capacity of particular networks. While most of the analyses are intellectually challenging, they lack universal properties that can be extended to study the capacity of a different network. In this paper, we sift through various capacity-impacting parameters and present a simple relationship that can be used to estimate the capacity of both static and mobile networks. Specifically, we show that the network capacity is determined by the average number of simultaneous transmissions, the link capacity and the average number of transmissions required to deliver a packet to its destination. Our result is valid for both finite networks and asymptotically infinite networks. We then use this result to explain and better understand the insights of some existing results on the capacity of static networks, mobile networks and hybrid networks and the multicast capacity. The capacity analysis using the aforementioned relationship often becomes simpler. The relationship can be used as a powerful tool to estimate the capacity of different networks. Our work makes important contributions towards developing a generic methodology for network capacity analysis that is applicable to a variety of different scenarios.Comment: accepted to appear in IEEE Transactions on Wireless Communication

    Dynamic algorithms for multicast with intra-session network coding

    Get PDF
    The problem of multiple multicast sessions with intra-session network coding in time-varying networks is considered. The network-layer capacity region of input rates that can be stably supported is established. Dynamic algorithms for multicast routing, network coding, power allocation, session scheduling, and rate allocation across correlated sources, which achieve stability for rates within the capacity region, are presented. This work builds on the back-pressure approach introduced by Tassiulas et al., extending it to network coding and correlated sources. In the proposed algorithms, decisions on routing, network coding, and scheduling between different sessions at a node are made locally at each node based on virtual queues for different sinks. For correlated sources, the sinks locally determine and control transmission rates across the sources. The proposed approach yields a completely distributed algorithm for wired networks. In the wireless case, power control among different transmitters is centralized while routing, network coding, and scheduling between different sessions at a given node are distributed

    Distributed Optimal Lexicographic Max-Min Rate Allocation in Solar-Powered Wireless Sensor Networks

    Get PDF
    Understanding the optimal usage of fluctuating renewable energy in Wireless Sensor Networks (WSNs) is complex. Lexicographic Max-min (LM) rate allocation is a good solution, but is non-trivial for multi-hop WSNs, as both fairness and sensing rates have to be optimized through the exploration of all possible forwarding routes in the network. All current optimal approaches to this problem are centralized and off-line, suffering from low scalability and large computational complexity; typically solving O(N2 ) linear programming problems for N-node WSNs. This paper presents the first optimal distributed solution to this problem with much lower complexity. We apply it to Solar Powered WSNs (SP-WSNs) to achieve both LM optimality and sustainable operation. Based on realistic models of both time-varying solar power and photovoltaic-battery hardware, we propose an optimization framework that integrates a local power management algorithm with a global distributed LM rate allocation scheme. The optimality, convergence, and efficiency of our approaches are formally proven. We also evaluate our algorithms via experiments on both solar-powered MicaZ motes and extensive simulations using real solar energy data and practical power parameter settings. The results verify our theoretical analysis and demonstrate how our approach outperforms both the state-of-the-art centralized optimal and distributed heuristic solutions

    Towards the efficient use of LoRa for wireless sensor networks

    Get PDF
    Since their inception in 1998 with the Smart Dust Project from University of Berkeley, Wireless Sensor Networks (WSNs) had a tremendous impact on both science and society, influencing many (new) research fields, like Cyber-physical System (CPS), Machine to Machine (M2M), and Internet of Things (IoT). In over two decades, WSN researchers have delivered a wide-range of hardware, communication protocols, operating systems, and applications, to deal with the now classic problems of resourceconstrained devices, limited energy sources, and harsh communication environments. However, WSN research happened mostly on the same kind of hardware. With wireless communication and embedded hardware evolving, there are new opportunities to resolve the long standing issues of scaling, deploying, and maintaining a WSN. To this end, we explore in this work the most recent advances in low-power, longrange wireless communication, and the new challenges these new wireless communication techniques introduce. Specifically, we focus on the most promising such technology: LoRa. LoRa is a novel low-power, long-range communication technology, which promises a single-hop network with millions of sensor nodes. Using practical experiments, we evaluate the unique properties of LoRa, like orthogonal spreading factors, nondestructive concurrent transmissions, and carrier activity detection. Utilising these unique properties, we build a novel TDMA-style multi-hop Medium Access Control (MAC) protocol called LoRaBlink. Based on empirical results, we develop a communication model and simulator called LoRaSim to explore the scalability of a LoRa network. We conclude that, in its current deployment, LoRa cannot support the scale it is envisioned to operate at. One way to improve this scalability issue is Adaptive Data Rate (ADR). We develop two ADR protocols, Probing and Optimistic Probing, and compare them with the de facto standard ADR protocol used in the crowdsourced TTN LoRaWAN network. We demonstrate that our algorithms are much more responsive, energy efficient, and able to reach a more efficient configuration quicker, though reaching a suboptimal configuration for poor links, which is offset by the savings caused by the convergence speed. Overall, this work provides theoretical and empirical proofs that LoRa can tackle some of the long standing problems within WSN. We envision that future work, in particular on ADR and MAC protocols for LoRa and other low-power, long-range communication technologies, will help push these new communication technologies to main-stream status in WSNs
    • …
    corecore