11,866 research outputs found

    Making triangulations 4-connected using flips

    Full text link
    We show that any combinatorial triangulation on n vertices can be transformed into a 4-connected one using at most floor((3n - 9)/5) edge flips. We also give an example of an infinite family of triangulations that requires this many flips to be made 4-connected, showing that our bound is tight. In addition, for n >= 19, we improve the upper bound on the number of flips required to transform any 4-connected triangulation into the canonical triangulation (the triangulation with two dominant vertices), matching the known lower bound of 2n - 15. Our results imply a new upper bound on the diameter of the flip graph of 5.2n - 33.6, improving on the previous best known bound of 6n - 30.Comment: 22 pages, 8 figures. Accepted to CGTA special issue for CCCG 2011. Conference version available at http://2011.cccg.ca/PDFschedule/papers/paper34.pd

    Once punctured disks, non-convex polygons, and pointihedra

    Get PDF
    We explore several families of flip-graphs, all related to polygons or punctured polygons. In particular, we consider the topological flip-graphs of once-punctured polygons which, in turn, contain all possible geometric flip-graphs of polygons with a marked point as embedded sub-graphs. Our main focus is on the geometric properties of these graphs and how they relate to one another. In particular, we show that the embeddings between them are strongly convex (or, said otherwise, totally geodesic). We also find bounds on the diameters of these graphs, sometimes using the strongly convex embeddings. Finally, we show how these graphs relate to different polytopes, namely type D associahedra and a family of secondary polytopes which we call pointihedra.Comment: 24 pages, 6 figure

    A History of Flips in Combinatorial Triangulations

    Get PDF
    Given two combinatorial triangulations, how many edge flips are necessary and sufficient to convert one into the other? This question has occupied researchers for over 75 years. We provide a comprehensive survey, including full proofs, of the various attempts to answer it.Comment: Added a paragraph referencing earlier work in the vertex-labelled setting that has implications for the unlabeled settin

    Graph properties of graph associahedra

    Full text link
    A graph associahedron is a simple polytope whose face lattice encodes the nested structure of the connected subgraphs of a given graph. In this paper, we study certain graph properties of the 1-skeleta of graph associahedra, such as their diameter and their Hamiltonicity. Our results extend known results for the classical associahedra (path associahedra) and permutahedra (complete graph associahedra). We also discuss partial extensions to the family of nestohedra.Comment: 26 pages, 20 figures. Version 2: final version with minor correction

    Flip-graph moduli spaces of filling surfaces

    Full text link
    This paper is about the geometry of flip-graphs associated to triangulations of surfaces. More precisely, we consider a topological surface with a privileged boundary curve and study the spaces of its triangulations with n vertices on the boundary curve. The surfaces we consider topologically fill this boundary curve so we call them filling surfaces. The associated flip-graphs are infinite whenever the mapping class group of the surface (the group of self-homeomorphisms up to isotopy) is infinite, and we can obtain moduli spaces of flip-graphs by considering the flip-graphs up to the action of the mapping class group. This always results in finite graphs and we are interested in their geometry. Our main focus is on the diameter growth of these graphs as n increases. We obtain general estimates that hold for all topological types of filling surface. We find more precise estimates for certain families of filling surfaces and obtain asymptotic growth results for several of them. In particular, we find the exact diameter of modular flip-graphs when the filling surface is a cylinder with a single vertex on the non-privileged boundary curve.Comment: 52 pages, 29 figure

    The geometry of flip graphs and mapping class groups

    Full text link
    The space of topological decompositions into triangulations of a surface has a natural graph structure where two triangulations share an edge if they are related by a so-called flip. This space is a sort of combinatorial Teichm\"uller space and is quasi-isometric to the underlying mapping class group. We study this space in two main directions. We first show that strata corresponding to triangulations containing a same multiarc are strongly convex within the whole space and use this result to deduce properties about the mapping class group. We then focus on the quotient of this space by the mapping class group to obtain a type of combinatorial moduli space. In particular, we are able to identity how the diameters of the resulting spaces grow in terms of the complexity of the underlying surfaces.Comment: 46 pages, 23 figure

    Topological Prismatoids and Small Simplicial Spheres of Large Diameter

    Full text link
    We introduce topological prismatoids, a combinatorial abstraction of the (geometric) prismatoids recently introduced by the second author to construct counter-examples to the Hirsch conjecture. We show that the `strong dd-step Theorem' that allows to construct such large-diameter polytopes from `non-dd-step' prismatoids still works at this combinatorial level. Then, using metaheuristic methods on the flip graph, we construct four combinatorially different non-dd-step 44-dimensional topological prismatoids with 1414 vertices. This implies the existence of 88-dimensional spheres with 1818 vertices whose combinatorial diameter exceeds the Hirsch bound. These examples are smaller that the previously known examples by Mani and Walkup in 1980 (2424 vertices, dimension 1111). Our non-Hirsch spheres are shellable but we do not know whether they are realizable as polytopes.Comment: 20 pages. Changes from v1 and v2: Reduced the part on shellability and general improvement to accesibilit
    • …
    corecore