16,536 research outputs found

    Convergence Speed of the Consensus Algorithm with Interference and Sparse Long-Range Connectivity

    Full text link
    We analyze the effect of interference on the convergence rate of average consensus algorithms, which iteratively compute the measurement average by message passing among nodes. It is usually assumed that these algorithms converge faster with a greater exchange of information (i.e., by increased network connectivity) in every iteration. However, when interference is taken into account, it is no longer clear if the rate of convergence increases with network connectivity. We study this problem for randomly-placed consensus-seeking nodes connected through an interference-limited network. We investigate the following questions: (a) How does the rate of convergence vary with increasing communication range of each node? and (b) How does this result change when each node is allowed to communicate with a few selected far-off nodes? When nodes schedule their transmissions to avoid interference, we show that the convergence speed scales with r2βˆ’dr^{2-d}, where rr is the communication range and dd is the number of dimensions. This scaling is the result of two competing effects when increasing rr: Increased schedule length for interference-free transmission vs. the speed gain due to improved connectivity. Hence, although one-dimensional networks can converge faster from a greater communication range despite increased interference, the two effects exactly offset one another in two-dimensions. In higher dimensions, increasing the communication range can actually degrade the rate of convergence. Our results thus underline the importance of factoring in the effect of interference in the design of distributed estimation algorithms.Comment: 27 pages, 4 figure

    Resolving Structure in Human Brain Organization: Identifying Mesoscale Organization in Weighted Network Representations

    Full text link
    Human brain anatomy and function display a combination of modular and hierarchical organization, suggesting the importance of both cohesive structures and variable resolutions in the facilitation of healthy cognitive processes. However, tools to simultaneously probe these features of brain architecture require further development. We propose and apply a set of methods to extract cohesive structures in network representations of brain connectivity using multi-resolution techniques. We employ a combination of soft thresholding, windowed thresholding, and resolution in community detection, that enable us to identify and isolate structures associated with different weights. One such mesoscale structure is bipartivity, which quantifies the extent to which the brain is divided into two partitions with high connectivity between partitions and low connectivity within partitions. A second, complementary mesoscale structure is modularity, which quantifies the extent to which the brain is divided into multiple communities with strong connectivity within each community and weak connectivity between communities. Our methods lead to multi-resolution curves of these network diagnostics over a range of spatial, geometric, and structural scales. For statistical comparison, we contrast our results with those obtained for several benchmark null models. Our work demonstrates that multi-resolution diagnostic curves capture complex organizational profiles in weighted graphs. We apply these methods to the identification of resolution-specific characteristics of healthy weighted graph architecture and altered connectivity profiles in psychiatric disease.Comment: Comments welcom

    Moment-Based Spectral Analysis of Random Graphs with Given Expected Degrees

    Get PDF
    In this paper, we analyze the limiting spectral distribution of the adjacency matrix of a random graph ensemble, proposed by Chung and Lu, in which a given expected degree sequence wβ€ΎnT=(w1(n),…,wn(n))\overline{w}_n^{^{T}} = (w^{(n)}_1,\ldots,w^{(n)}_n) is prescribed on the ensemble. Let ai,j=1\mathbf{a}_{i,j} =1 if there is an edge between the nodes {i,j}\{i,j\} and zero otherwise, and consider the normalized random adjacency matrix of the graph ensemble: An\mathbf{A}_n == [ai,j/n]i,j=1n [\mathbf{a}_{i,j}/\sqrt{n}]_{i,j=1}^{n}. The empirical spectral distribution of An\mathbf{A}_n denoted by Fn(β‹…)\mathbf{F}_n(\mathord{\cdot}) is the empirical measure putting a mass 1/n1/n at each of the nn real eigenvalues of the symmetric matrix An\mathbf{A}_n. Under some technical conditions on the expected degree sequence, we show that with probability one, Fn(β‹…)\mathbf{F}_n(\mathord{\cdot}) converges weakly to a deterministic distribution F(β‹…)F(\mathord{\cdot}). Furthermore, we fully characterize this distribution by providing explicit expressions for the moments of F(β‹…)F(\mathord{\cdot}). We apply our results to well-known degree distributions, such as power-law and exponential. The asymptotic expressions of the spectral moments in each case provide significant insights about the bulk behavior of the eigenvalue spectrum
    • …
    corecore