4,703 research outputs found

    A lower bound on branching programs reading some bits twice

    Get PDF
    AbstractBy (1, + k(n))-branching programs (b.p.'s) we mean those b.p.'s which during each of their computations are allowed to test at most k(n) input bits repeatedly. For a Boolean function computable within polynomial time a trade-off is presented between the size and the number of repeatedly tested input bits of any b.p. P computing the function. Namely, if at most k(n) repeated tests are allowed, where log2 n ⩽ k(n) ⩽ n(1000 log2 n), then the size of P is at least exp(Ω(n(k(n)log2 n))12). This is exponential whenever k(n) ⩽ nα for a fixed α < 1 and superpolynomial whenever k(n) = o(nlog32 n).The presented result is a step towards a superpolynomial lower bound for 2-b.p.'s which is an open problem since 1984 when the first superpolynomial lower bounds for 1-b.p.'s were proven (Wegener, 1988; Žák, 1984). The present result is an improvement on (Žák, 1995)

    Time-Space Tradeoffs for the Memory Game

    Get PDF
    A single-player game of Memory is played with nn distinct pairs of cards, with the cards in each pair bearing identical pictures. The cards are laid face-down. A move consists of revealing two cards, chosen adaptively. If these cards match, i.e., they bear the same picture, they are removed from play; otherwise, they are turned back to face down. The object of the game is to clear all cards while minimizing the number of moves. Past works have thoroughly studied the expected number of moves required, assuming optimal play by a player has that has perfect memory. In this work, we study the Memory game in a space-bounded setting. We prove two time-space tradeoff lower bounds on algorithms (strategies for the player) that clear all cards in TT moves while using at most SS bits of memory. First, in a simple model where the pictures on the cards may only be compared for equality, we prove that ST=Ω(n2logn)ST = \Omega(n^2 \log n). This is tight: it is easy to achieve ST=O(n2logn)ST = O(n^2 \log n) essentially everywhere on this tradeoff curve. Second, in a more general model that allows arbitrary computations, we prove that ST2=Ω(n3)ST^2 = \Omega(n^3). We prove this latter tradeoff by modeling strategies as branching programs and extending a classic counting argument of Borodin and Cook with a novel probabilistic argument. We conjecture that the stronger tradeoff ST=Ω~(n2)ST = \widetilde{\Omega}(n^2) in fact holds even in this general model

    On the Power of Regular and Permutation Branching Programs

    Get PDF
    We give new upper and lower bounds on the power of several restricted classes of arbitrary-order read-once branching programs (ROBPs) and standard-order ROBPs (SOBPs) that have received significant attention in the literature on pseudorandomness for space-bounded computation. - Regular SOBPs of length n and width ?w(n+1)/2? can exactly simulate general SOBPs of length n and width w, and moreover an n/2-o(n) blow-up in width is necessary for such a simulation. Our result extends and simplifies prior average-case simulations (Reingold, Trevisan, and Vadhan (STOC 2006), Bogdanov, Hoza, Prakriya, and Pyne (CCC 2022)), in particular implying that weighted pseudorandom generators (Braverman, Cohen, and Garg (SICOMP 2020)) for regular SOBPs of width poly(n) or larger automatically extend to general SOBPs. Furthermore, our simulation also extends to general (even read-many) oblivious branching programs. - There exist natural functions computable by regular SOBPs of constant width that are average-case hard for permutation SOBPs of exponential width. Indeed, we show that Inner-Product mod 2 is average-case hard for arbitrary-order permutation ROBPs of exponential width. - There exist functions computable by constant-width arbitrary-order permutation ROBPs that are worst-case hard for exponential-width SOBPs. - Read-twice permutation branching programs of subexponential width can simulate polynomial-width arbitrary-order ROBPs

    Nondeterminism and an abstract formulation of Ne\v{c}iporuk's lower bound method

    Get PDF
    A formulation of "Ne\v{c}iporuk's lower bound method" slightly more inclusive than the usual complexity-measure-specific formulation is presented. Using this general formulation, limitations to lower bounds achievable by the method are obtained for several computation models, such as branching programs and Boolean formulas having access to a sublinear number of nondeterministic bits. In particular, it is shown that any lower bound achievable by the method of Ne\v{c}iporuk for the size of nondeterministic and parity branching programs is at most O(n3/2/logn)O(n^{3/2}/\log n)

    Towards Verifying Nonlinear Integer Arithmetic

    Full text link
    We eliminate a key roadblock to efficient verification of nonlinear integer arithmetic using CDCL SAT solvers, by showing how to construct short resolution proofs for many properties of the most widely used multiplier circuits. Such short proofs were conjectured not to exist. More precisely, we give n^{O(1)} size regular resolution proofs for arbitrary degree 2 identities on array, diagonal, and Booth multipliers and quasipolynomial- n^{O(\log n)} size proofs for these identities on Wallace tree multipliers.Comment: Expanded and simplified with improved result

    Quantum vs. Classical Read-once Branching Programs

    Full text link
    The paper presents the first nontrivial upper and lower bounds for (non-oblivious) quantum read-once branching programs. It is shown that the computational power of quantum and classical read-once branching programs is incomparable in the following sense: (i) A simple, explicit boolean function on 2n input bits is presented that is computable by error-free quantum read-once branching programs of size O(n^3), while each classical randomized read-once branching program and each quantum OBDD for this function with bounded two-sided error requires size 2^{\Omega(n)}. (ii) Quantum branching programs reading each input variable exactly once are shown to require size 2^{\Omega(n)} for computing the set-disjointness function DISJ_n from communication complexity theory with two-sided error bounded by a constant smaller than 1/2-2\sqrt{3}/7. This function is trivially computable even by deterministic OBDDs of linear size. The technically most involved part is the proof of the lower bound in (ii). For this, a new model of quantum multi-partition communication protocols is introduced and a suitable extension of the information cost technique of Jain, Radhakrishnan, and Sen (2003) to this model is presented.Comment: 35 pages. Lower bound for disjointness: Error in application of info theory corrected and regularity of quantum read-once BPs (each variable at least once) added as additional assumption of the theorem. Some more informal explanations adde

    Pseudorandom Bits for Oblivious Branching Programs

    Get PDF
    We construct a pseudorandom generator that fools known-order read-k oblivious branching programs and, more generally, any linear length oblivious branching program. For polynomial width branching programs, the seed lengths in our constructions are O(n^(1−1/2^(k−1))) (for the read-k case) and O(n/log log n) (for the linear length case). Previously, the best construction for these models required seed length (1 − Ω(1))n
    corecore