70 research outputs found

    A lower bound for the size of a Minkowski sum of dilates

    Get PDF
    Let A be a finite non-empty set of integers. An asymptotic estimate of the size of the sum of several dilates was obtained by Bukh. The unique known exact bound concerns the sum |A + k·A|, where k is a prime and |A| is large. In its full generality, this bound is due to Cilleruelo, Serra and the first author. Let k be an odd prime and assume that |A| > 8kk. A corollary to our main result states that |2·A + k·A|=(k+2)|A|-k2-k+2. Notice that |2·P+k·P|=(k+2)|P|-2k, if P is an arithmetic progression.Postprint (author's final draft

    Lattice polytopes in coding theory

    Get PDF
    In this paper we discuss combinatorial questions about lattice polytopes motivated by recent results on minimum distance estimation for toric codes. We also prove a new inductive bound for the minimum distance of generalized toric codes. As an application, we give new formulas for the minimum distance of generalized toric codes for special lattice point configurations.Comment: 11 pages, 3 figure

    Global residues for sparse polynomial systems

    Get PDF
    We consider families of sparse Laurent polynomials f_1,...,f_n with a finite set of common zeroes Z_f in the complex algebraic n-torus. The global residue assigns to every Laurent polynomial g the sum of its Grothendieck residues over the set Z_f. We present a new symbolic algorithm for computing the global residue as a rational function of the coefficients of the f_i when the Newton polytopes of the f_i are full-dimensional. Our results have consequences in sparse polynomial interpolation and lattice point enumeration in Minkowski sums of polytopes.Comment: Typos corrected, reference added, 13 pages, 5 figures. To appear in JPA

    On distance measures for well-distributed sets

    Full text link
    In this paper we investigate the Erd\"os/Falconer distance conjecture for a natural class of sets statistically, though not necessarily arithmetically, similar to a lattice. We prove a good upper bound for spherical means that have been classically used to study this problem. We conjecture that a majorant for the spherical means suffices to prove the distance conjecture(s) in this setting. For a class of non-Euclidean distances, we show that this generally cannot be achieved, at least in dimension two, by considering integer point distributions on convex curves and surfaces. In higher dimensions, we link this problem to the question about the existence of smooth well-curved hypersurfaces that support many integer points
    corecore