839 research outputs found

    Investigation of wireless electrification for a reconfigurable manufacturing cell

    Get PDF
    Reconfigurable manufacturing systems (RMS) with a rearrangeable structure can quickly adjust their productivity to meet the dynamic market changes and the demand for high-variety products. Industry 4.0 technologies have enhanced the RMS flexibility and made the automation of the reconfiguration of the manufacturing system possible. As an Industry 4.0 technology, wireless power transfer (WPT) can further increase the flexibility of RMS by providing safe, reliable, and maintenance-free autonomous charging. This paper examines the wireless electrification of RMS by investigating different WPT configurations that increase flexibility and autonomy, creating a highly flexible RMS. It also proposes a battery charging platform for further enhancement of the flexibility of RMS. As a low-cost WPT solution, the paper tests capacitive charging systems. The proposed charging system has about 135 W power transfer capability at a 5 cm distance and about 84% efficiency

    A Design Method to Minimize Detuning for Double Sided LCC Compensated IPT System Improving Efficiency Versus Air Gap Variation

    Get PDF
    Inductive power transfer (IPT) technology has garnered considerable attention due to its widespread range of applications. The variation in the air gap can result in variations in the loosely coupled transformer (LCT) parameters, including self-inductance and mutual inductance, due to positional deviations with the ferrite cores on both sides. These variable LCT parameters can damage the resonant tank, ultimately resulting in reduced efficiency. To address this problem, a double-sided LCC-compensated IPT system with a compact decoupled coil is proposed in this paper to improve the system's efficiency with respect to the air gap variation. The key idea is to neutralize the variation in LCT parameters through the use of the self-inductance variation of the decoupled coil so that the detuning degree of the system can be suppressed. Subsequently, the analysis and parametric design process of the system are elaborated. Finally, a 1 kW experimental setup is built to verify the feasibility of the proposed method. Experimental results show that the efficiency of the system proposed in this work varies from 92.63% to 74.81%, as the air gap increases from 30mm to 90mm, wherein the primary and secondary self-inductance and mutual inductance increased by 19.3% and 135.3%, respectively. Compared with the traditional method, the maximum efficiency improvement is up to 8.16%

    Applications of Power Electronics:Volume 2

    Get PDF

    Power Quality in Electrified Transportation Systems

    Get PDF
    "Power Quality in Electrified Transportation Systems" has covered interesting horizontal topics over diversified transportation technologies, ranging from railways to electric vehicles and ships. Although the attention is chiefly focused on typical railway issues such as harmonics, resonances and reactive power flow compensation, the integration of electric vehicles plays a significant role. The book is completed by some additional significant contributions, focusing on the interpretation of Power Quality phenomena propagation in railways using the fundamentals of electromagnetic theory and on electric ships in the light of the latest standardization efforts

    Digital control for automating feed distribution in feedlots

    Get PDF
    An investigation was conducted to determine the feasibility of automatic controls to automate feed distribution in feedlots. The control approach was restricted to compatibility with conventional feeding equipment. Input control signals were taken to originate from commonly available mechanical and electronic sensors. The control system was implemented with standard digital logic components;The proposed digital control system is based on a railguided, self-propelled automatic vehicle capable of delivering feed sequentially to 255 pens located on both sides of a single feeding path. A manual, closed-loop control system consisting of the following functions was developed: (1) pen identification, (2) initialization control, (3) feeding mode, (4) exit from feeding mode, (5) re-entry into feeding mode, (6) end of feeding cycle, (7) ground drive and conveyor control, (8) interface and auto/manual mode, (9) monitoring of automated system and (10) data and failure display and alarm. The control system allows either automatic or manual operation of the feeding vehicle. Digital electronic circuits capable of implementing the desired control functions were designed;The feeding cycle is manually initiated and automatically terminated when feed has been delivered to all pens requiring feed. It can be partially programmed to enable feed delivery to sections of the feedlot. Two feed rations can be delivered. The feeding status of each pen is recorded. The pen feed rations are stored in reprogrammable memories;The operation of the automated feeding system is based on the automatic identification of the feedlot pens. The number assigned to a pen is coded, using binary pulse-code modulation. Frequency-shift keying is used to transmit the coded number. The received coded number is recovered by specialized communication circuits and then validated;The control system monitors the vehicle components and the major electronic circuits to detect failures, prevent damage and produce a safe operation. Furthermore, it incorporates safety sensors and logic circuitry to meet the basic safety requirements pertaining to automated vehicles;The proposed automated feed distribution system for feedlots is expected to: (1) reduce management requirements through automatic distribution of feed to cattle raised in pens, (2) increase efficiency of feeding operation by eliminating time losses associated with secondary feed transfer, (3) eliminate damage to feedbunks through positive guidance of the vehicle by rails, and (4) save energy by eliminating secondary feed transfer

    Efficiency Improvement of Dual-Receiver WPT Systems Based on Partial Power Processing Control

    Get PDF

    Capacitive power transfer for maritime electrical charging applications

    Get PDF
    Wireless power transfer can provide the convenience of automatic charging while the ships or maritime vehicles are docking, mooring, or in a sailing maneuver. It can address the challenges facing conventional wired charging technologies, including long charging and queuing time, wear and tear of the physical contacts, handling cables and wires, and electric shock hazards. Capacitive power transfer (CPT) is one of the wireless charging technologies that has received attention in on-road electric vehicle charging applications. By the main of electric fields, CPT offers an inexpensive and light charging solution with good misalignment performance. Thus, this study investigates the CPT system in which air and water are the separation medium for the electrical wireless charging of small ships and unmanned maritime vehicles. Unlike on-road charging applications, air or water can be utilized as charging mediums to charge small ships and unmanned maritime vehicles. Because of the low permittivity of the air, the air-gapped capacitive coupling in the Pico Farad range requires a mega-hertz operating frequency to transfer power over a few hundred millimeters. This study examines an air-gapped CPT system to transfer about 135 W at a separation distance of 50 mm, a total efficiency of approximately 83.9%, and a 1 MHz operating efficiency. At 13.56 MHz, the study tested a shielded air-gapped CPT system that transfers about 100 W at a separation distance of 30 mm and a total efficiency of about 87%. The study also examines the underwater CPT system by submerging the couplers in water to increase the capacitive coupling. The system can transfer about 129 W at a separation distance of 300 mm, a total efficiency of aboutapproximately%, and a 1.1 MHz operating efficiency. These CPT systems can upscale to provide a few kW for small ships and unmanned maritime vehicles. But they are still facing several challenges that need further investigations

    Master of Science

    Get PDF
    thesisThis thesis discusses the design, modeling, and experimental validation of an inductively coupled wireless power transfer (WPT) system to power a micro aerial vehicle (MAV) without an onboard power source. MAVs are limited in utility by flight times ranging from 5 to 30 minutes. Using WPT for MAVs, in general, extends flight time and can eliminate the need for batteries. In this paper, a resonant inductive power transfer system (RIPT), consisting of a transmit (Tx) coil on a fixed surface and a receive (Rx) coil attached to the MAV, is presented, and a circuit is described. The RIPT system design is modeled to determine a suitable geometry for the coils, and the model validated experimentally. It is found that for the MAV used in this work, a suitable geometry of coils is a 19cm diameter planar spiral Tx coil made with 14 AWG copper wire, seven turns, and 5cm pitch paired with an Rx coil made of 16-20AWG wire, 13cm-20cm diameter, 1mm pitch, and one to two turns. A demonstration of an MAV being powered 11cm above the Tx coil with the WPT system in a laboratory setting is presented. The MAV consumes approximately 12 Watts. The overall power efficiency of the RIPT system from RF power source output to MAV motors is approximately 32%

    Wireless Power Transfer

    Get PDF
    Wireless power transfer techniques have been gaining researchers' and industry attention due to the increasing number of battery-powered devices, such as mobile computers, mobile phones, smart devices, intelligent sensors, mainly as a way to replace the standard cable charging, but also for powering battery-less equipment. The storage capacity of batteries is an extremely important element of how a device can be used. If we talk about battery-powered electronic equipment, the autonomy is one factor that may be essential in choosing a device or another, making the solution of remote powering very attractive. A distinction has to be made between the two forms of wireless power transmission, as seen in terms of how the transmitted energy is used at the receiving point: - Transmission of information or data, when it is essential for an amount of energy to reach the receiver to restore the transmitted information; - Transmission of electric energy in the form of electromagnetic field, when the energy transfer efficiency is essential, the power being used to energize the receiving equipment. The second form of energy transfer is the subject of this book

    Sensor-based management systems based on RFID technology

    Get PDF
    Παρατηρήσεις έκδοσης: λείπουν οι σελίδες 78, 102 από το φυσικό τεκμήριο.In this diploma thesis, the RFID technology is analyzed (operating principles, readers' and tags hardware, coding, modulation, anticollision procedures, frequencies, standards, applications). Moreover, a protocol to synchronize readers working in a multi-reader multi-tag environment is proposed. The protocol is applied to the store shelf scanning application and further refined to meet the requirements of this specific application
    corecore