742 research outputs found

    Multi-patch discontinuous Galerkin isogeometric analysis for wave propagation: explicit time-stepping and efficient mass matrix inversion

    Full text link
    We present a class of spline finite element methods for time-domain wave propagation which are particularly amenable to explicit time-stepping. The proposed methods utilize a discontinuous Galerkin discretization to enforce continuity of the solution field across geometric patches in a multi-patch setting, which yields a mass matrix with convenient block diagonal structure. Over each patch, we show how to accurately and efficiently invert mass matrices in the presence of curved geometries by using a weight-adjusted approximation of the mass matrix inverse. This approximation restores a tensor product structure while retaining provable high order accuracy and semi-discrete energy stability. We also estimate the maximum stable timestep for spline-based finite elements and show that the use of spline spaces result in less stringent CFL restrictions than equivalent piecewise continuous or discontinuous finite element spaces. Finally, we explore the use of optimal knot vectors based on L2 n-widths. We show how the use of optimal knot vectors can improve both approximation properties and the maximum stable timestep, and present a simple heuristic method for approximating optimal knot positions. Numerical experiments confirm the accuracy and stability of the proposed methods

    A Provably Stable Discontinuous Galerkin Spectral Element Approximation for Moving Hexahedral Meshes

    Full text link
    We design a novel provably stable discontinuous Galerkin spectral element (DGSEM) approximation to solve systems of conservation laws on moving domains. To incorporate the motion of the domain, we use an arbitrary Lagrangian-Eulerian formulation to map the governing equations to a fixed reference domain. The approximation is made stable by a discretization of a skew-symmetric formulation of the problem. We prove that the discrete approximation is stable, conservative and, for constant coefficient problems, maintains the free-stream preservation property. We also provide details on how to add the new skew-symmetric ALE approximation to an existing discontinuous Galerkin spectral element code. Lastly, we provide numerical support of the theoretical results

    An entropy stable discontinuous Galerkin method for the shallow water equations on curvilinear meshes with wet/dry fronts accelerated by GPUs

    Full text link
    We extend the entropy stable high order nodal discontinuous Galerkin spectral element approximation for the non-linear two dimensional shallow water equations presented by Wintermeyer et al. [N. Wintermeyer, A. R. Winters, G. J. Gassner, and D. A. Kopriva. An entropy stable nodal discontinuous Galerkin method for the two dimensional shallow water equations on unstructured curvilinear meshes with discontinuous bathymetry. Journal of Computational Physics, 340:200-242, 2017] with a shock capturing technique and a positivity preservation capability to handle dry areas. The scheme preserves the entropy inequality, is well-balanced and works on unstructured, possibly curved, quadrilateral meshes. For the shock capturing, we introduce an artificial viscosity to the equations and prove that the numerical scheme remains entropy stable. We add a positivity preserving limiter to guarantee non-negative water heights as long as the mean water height is non-negative. We prove that non-negative mean water heights are guaranteed under a certain additional time step restriction for the entropy stable numerical interface flux. We implement the method on GPU architectures using the abstract language OCCA, a unified approach to multi-threading languages. We show that the entropy stable scheme is well suited to GPUs as the necessary extra calculations do not negatively impact the runtime up to reasonably high polynomial degrees (around N=7N=7). We provide numerical examples that challenge the shock capturing and positivity properties of our scheme to verify our theoretical findings

    GPU-accelerated discontinuous Galerkin methods on hybrid meshes

    Full text link
    We present a time-explicit discontinuous Galerkin (DG) solver for the time-domain acoustic wave equation on hybrid meshes containing vertex-mapped hexahedral, wedge, pyramidal and tetrahedral elements. Discretely energy-stable formulations are presented for both Gauss-Legendre and Gauss-Legendre-Lobatto (Spectral Element) nodal bases for the hexahedron. Stable timestep restrictions for hybrid meshes are derived by bounding the spectral radius of the DG operator using order-dependent constants in trace and Markov inequalities. Computational efficiency is achieved under a combination of element-specific kernels (including new quadrature-free operators for the pyramid), multi-rate timestepping, and acceleration using Graphics Processing Units.Comment: Submitted to CMAM

    An Entropy Stable Nodal Discontinuous Galerkin Method for the Two Dimensional Shallow Water Equations on Unstructured Curvilinear Meshes with Discontinuous Bathymetry

    Full text link
    We design an arbitrary high-order accurate nodal discontinuous Galerkin spectral element approximation for the nonlinear two dimensional shallow water equations with non-constant, possibly discontinuous, bathymetry on unstructured, possibly curved, quadrilateral meshes. The scheme is derived from an equivalent flux differencing formulation of the split form of the equations. We prove that this discretisation exactly preserves the local mass and momentum. Furthermore, combined with a special numerical interface flux function, the method exactly preserves the mathematical entropy, which is the total energy for the shallow water equations. By adding a specific form of interface dissipation to the baseline entropy conserving scheme we create a provably entropy stable scheme. That is, the numerical scheme discretely satisfies the second law of thermodynamics. Finally, with a particular discretisation of the bathymetry source term we prove that the numerical approximation is well-balanced. We provide numerical examples that verify the theoretical findings and furthermore provide an application of the scheme for a partial break of a curved dam test problem
    corecore