21 research outputs found

    Multi-Loop-Ring-Oscillator Design and Analysis for Sub-Micron CMOS

    Get PDF
    Ring oscillators provide a central role in timing circuits for today?s mobile devices and desktop computers. Increased integration in these devices exacerbates switching noise on the supply, necessitating improved supply resilience. Furthermore, reduced voltage headroom in submicron technologies limits the number of stacked transistors available in a delay cell. Hence, conventional single-loop oscillators offer relatively few design options to achieve desired specifications, such as supply rejection. Existing state-of-the-art supply-rejection- enhancement methods include actively regulating the supply with an LDO, employing a fully differential or current-starved delay cell, using a hi-Z voltage-to-current converter, or compensating/calibrating the delay cell. Multiloop ring oscillators (MROs) offer an additional solution because by employing a more complex ring-connection structure and associated delay cell, the designer obtains an additional degree of freedom to meet the desired specifications. Designing these more complex multiloop structures to start reliably and achieve the desired performance requires a systematic analysis procedure, which we attack on two fronts: (1) a generalized delay-cell viewpoint of the MRO structure to assist in both analysis and circuit layout, and (2) a survey of phase-noise analysis to provide a bank of methods to analyze MRO phase noise. We distill the salient phase-noise-analysis concepts/key equations previously developed to facilitate MRO and other non-conventional oscillator analysis. Furthermore, our proposed analysis framework demonstrates that all these methods boil down to obtaining three things: (1) noise modulation function (NMF), (2) noise transfer function (NTF), and (3) current-controlled-oscillator gain (KICO). As a case study, we detail the design, analysis, and measurement of a proposed multiloop ring oscillator structure that provides improved power-supply isolation (more than 20dB increase in supply rejection over a conventional-oscillator control case fabricated on the same test chip). Applying our general multi-loop-oscillator framework to this proposed MRO circuit leads both to design-oriented expressions for the oscillation frequency and supply rejection as well as to an efficient layout technique facilitating cross-coupling for improved quadrature accuracy and systematic, substantially simplified layout effort

    Multi-Loop-Ring-Oscillator Design and Analysis for Sub-Micron CMOS

    Get PDF
    Ring oscillators provide a central role in timing circuits for today?s mobile devices and desktop computers. Increased integration in these devices exacerbates switching noise on the supply, necessitating improved supply resilience. Furthermore, reduced voltage headroom in submicron technologies limits the number of stacked transistors available in a delay cell. Hence, conventional single-loop oscillators offer relatively few design options to achieve desired specifications, such as supply rejection. Existing state-of-the-art supply-rejection- enhancement methods include actively regulating the supply with an LDO, employing a fully differential or current-starved delay cell, using a hi-Z voltage-to-current converter, or compensating/calibrating the delay cell. Multiloop ring oscillators (MROs) offer an additional solution because by employing a more complex ring-connection structure and associated delay cell, the designer obtains an additional degree of freedom to meet the desired specifications. Designing these more complex multiloop structures to start reliably and achieve the desired performance requires a systematic analysis procedure, which we attack on two fronts: (1) a generalized delay-cell viewpoint of the MRO structure to assist in both analysis and circuit layout, and (2) a survey of phase-noise analysis to provide a bank of methods to analyze MRO phase noise. We distill the salient phase-noise-analysis concepts/key equations previously developed to facilitate MRO and other non-conventional oscillator analysis. Furthermore, our proposed analysis framework demonstrates that all these methods boil down to obtaining three things: (1) noise modulation function (NMF), (2) noise transfer function (NTF), and (3) current-controlled-oscillator gain (KICO). As a case study, we detail the design, analysis, and measurement of a proposed multiloop ring oscillator structure that provides improved power-supply isolation (more than 20dB increase in supply rejection over a conventional-oscillator control case fabricated on the same test chip). Applying our general multi-loop-oscillator framework to this proposed MRO circuit leads both to design-oriented expressions for the oscillation frequency and supply rejection as well as to an efficient layout technique facilitating cross-coupling for improved quadrature accuracy and systematic, substantially simplified layout effort

    Analysis and Design of Radio Frequency Integrated Circuits for Breast Cancer Radar Imaging in CMOS Technology

    Get PDF
    Breast cancer is by far the most incident tumor among female population. Early stage prevention is a key factor in delivering long term survival of breast cancer patients. X-ray mammography is the most commonly used diagnostic technique to detect non-palpable tumors. However, 10-30% of tumors are missed by mammography and ionizing radiations together with breast compression do not lead to comfort in patient treatment. In this context, ultrawideband microwave radar technology is an attractive alternative. It relies on the dielectric contrast of normal and malignant tissues at microwave frequencies to detect and locate tumors inside the breast. This work presents the analysis and design of radio frequency integrated circuits for breast cancer imaging in CMOS technology. The first part of the thesis concerns the system analysis. A behavioral model of two different transceiver architectures for UWB breast cancer imaging employing a SFCW radar system are presented. A mathematical model of the direct conversion and super heterodyne architectures together with a numerical breast phantom are developed. FDTD simulations data are used to on the behavioral model to investigate the limits of both architectures from a circuit-level point of view. Insight is given into I/Q phase inaccuracies and their impact on the quality of the final reconstructed images. The result is that the simplicity of the direct conversion architecture makes the receiver more robust toward the critical impairments for this application. The second part of the thesis is dedicated to the circuit design. The main achievement is a 65nm CMOS 2-16GHz stepped frequency radar transceiver for medical imaging. The RX features 36dB conversion gain, >29dBm compression point, 7dB noise figure, and 30Hz 1/f noise corner. The TX outputs 14dBm with >40dBc harmonic rejection and <109dBc/Hz phase noise at 1MHz offset. Overall power dissipation is 204mW from 1.2V supply. The radar achieves 3mm resolution within the body, and 107dB dynamic range, a performance enabling the use for breast cancer diagnostic imaging. To further assess the capabilities of the proposed radar, a physical breast phantom was synthesized and two targets mimicking two tumors were buried inside the breast. The targets are clearly identified and correctly located, effectively proving the performance of the designed radar as a possible tool for breast cancer detection

    A 3.2 GHz Injection-Locked Ring Oscillator-Based Phase-Locked-Loop for Clock Recovery

    Get PDF
    An injection-locked ring oscillator-based phase-locked-loop targeting clock recovery for space application at 3.2 GHz is presented here. Most clock recovery circuits need a very low phase noise and jitter performance and are thus based on LC-type oscillators. These excellent performances come at the expense of a very poor integration density. To alleviate this issue, this work introduces an injection-locked ring oscillator-based PLL circuit. The combination of the injection-locking process with the use of ring oscillators allows for the benefit of excellent jitter performance while presenting an extremely low surface area due to an architecture without any inductor. The injection locking principle is addressed, and evidence of its phase noise and jitter improvements are confirmed through measurement results. Indeed, phase noise and jitter enhancements up to 43 dB and 23.3 mUI, respectively, were measured. As intended, this work shows the best integration density compared to recent similar state-of-the-art studies. The whole architecture measures 0.1 mm2 while consuming 34.6 mW in a low-cost 180 nm CMOS technology

    Design of Fully-Integrated High-Resolution Radars in CMOS and BiCMOS Technologies

    Get PDF
    The RADAR, acronym that stands for RAdio Detection And ranging, is a device that uses electromagnetic waves to detect the presence and the distance of an illuminated target. The idea of such a system was presented in the early 1900s to determine the presence of ships. Later on, with the approach of World War II, the radar gained the interest of the army who decided to use it for defense purposes, in order to detect the presence, the distance and the speed of ships, planes and even tanks. Nowadays, the use of similar systems is extended outside the military area. Common applications span from weather surveillance to Earth composition mapping and from flight control to vehicle speed monitoring. Moreover, the introduction of new ultrawideband (UWB) technologies makes it possible to perform radar imaging which can be successfully used in the automotive or medical field. The existence of a plenty of known applications is the reason behind the choice of the topic of this thesis, which is the design of fully-integrated high-resolution radars. The first part of this work gives a brief introduction on high resolution radars and describes its working principle in a mathematical way. Then it gives a comparison between the existing radar types and motivates the choice of an integrated solution instead of a discrete one. The second part concerns the analysis and design of two CMOS high-resolution radar prototypes tailored for the early detection of the breast cancer. This part begins with an explanation of the motivations behind this project. Then it gives a thorough system analysis which indicates the best radar architecture in presence of impairments and dictates all the electrical system specifications. Afterwards, it describes in depth each block of the transceivers with particular emphasis on the local oscillator (LO) generation system which is the most critical block of the designs. Finally, the last section of this part presents the measurement results. In particular, it shows that the designed radar operates over 3 octaves from 2 to 16GHz, has a conversion gain of 36dB, a flicker-noise-corner of 30Hz and a dynamic range of 107dB. These characteristics turn into a resolution of 3mm inside the body, more than enough to detect even the smallest tumor. The third and last part of this thesis focuses on the analysis and design of some important building blocks for phased-array radars, including phase shifter (PHS), true time delay (TTD) and power combiner. This part begins with an exhaustive introduction on phased array systems followed by a detailed description of each proposed lumped-element block. The main features of each block is the very low insertion loss, the wideband characteristic and the low area consumption. Finally, the major effects of circuit parasitics are described followed by simulation and measurement results

    Proceedings of the Second International Mobile Satellite Conference (IMSC 1990)

    Get PDF
    Presented here are the proceedings of the Second International Mobile Satellite Conference (IMSC), held June 17-20, 1990 in Ottawa, Canada. Topics covered include future mobile satellite communications concepts, aeronautical applications, modulation and coding, propagation and experimental systems, mobile terminal equipment, network architecture and control, regulatory and policy considerations, vehicle antennas, and speech compression

    Technology 2001: The Second National Technology Transfer Conference and Exposition, volume 2

    Get PDF
    Proceedings of the workshop are presented. The mission of the conference was to transfer advanced technologies developed by the Federal government, its contractors, and other high-tech organizations to U.S. industries for their use in developing new or improved products and processes. Volume two presents papers on the following topics: materials science, robotics, test and measurement, advanced manufacturing, artificial intelligence, biotechnology, electronics, and software engineering

    LANSCE Activity Report

    Full text link
    corecore