16 research outputs found

    Antennas and Propagation

    Get PDF
    This Special Issue gathers topics of utmost interest in the field of antennas and propagation, such as: new directions and challenges in antenna design and propagation; innovative antenna technologies for space applications; metamaterial, metasurface and other periodic structures; antennas for 5G; electromagnetic field measurements and remote sensing applications

    Dispersion Engineered Real-Time Analog Signal Processing Components and Systems

    Get PDF
    RĂ©sumĂ© Avec la demande croissante pour une plus grande efficacitĂ© d’utilisation du spectre de frĂ©quences et l’émergence de systĂšmes Ă  bande ultra large (UWB) qui en dĂ©coule, l’analyse d’environnements RF en temps rĂ©el est devenue d’une importance capitale. Traditionnellement, ceci est fait en utilisant des techniques d’analyse des signaux en temps rĂ©el basĂ©es soit sur une approche digitale, soit sur une approche analogique. Les appareils digitaux sont plus attrayants aux basses frĂ©quences Ă  cause de leur grande flexibilitĂ©, de leur taille compacte, de leur faible coĂ»t et de leur grande fiabilitĂ©. Par contre, aux plus hautes frĂ©quences, notamment aux frĂ©quences micro-ondes, les appareils digitaux ont des problĂšmes fondamentaux tels des performances faibles, un coĂ»t Ă©levĂ© des convertisseurs A/D et D/A et une consommation de puissance excessive. À ces frĂ©quences, des appareils et systĂšmes analogiques sont requis pour des applications d’analyse des signaux en temps rĂ©el. À cause de leur mode d’opĂ©ration fondamentalement analogique, ces systĂšmes sont appelÂŽes analyseurs analogiques de signaux, et l’opĂ©ration qu’ils effectuent est appelĂ©e analyse analogique de signaux (ASP). Cette thĂšse prĂ©sente les plus rĂ©centes avancĂ©es au niveau des ASP. Le concept d’ASP est introduit au chapitre 1. La contribution de cette thĂšse au domaine des ASP est Ă©galement prĂ©sentĂ©e au chapitre 1. Le cƓur d’un analyseur analogique de signaux en temps rĂ©el est une structure de dĂ©lai dispersive (DDS). Dans une structure dispersive, la vĂ©locitĂ© de groupe vg est une fonction de la frĂ©quence, ce qui cause une dĂ©pendance en frĂ©quence du dĂ©lai de groupe. Par consĂ©quent, un signal Ă  large bande qui se propage le long d’une telle structure est sujet Ă  un espacement dans le temps puisque ses diffĂ©rentes composantes spectrales voyagent avec diffĂ©rentes vitesses de groupes, et sont donc rĂ©arrangĂ©es dans le temps. En exploitant ce rĂ©arrangement temporel, les diffĂ©rentes composantes spectrales d’un signal Ă  large bande peuvent ĂȘtre directement transposĂ©es dans le domaine temporel et peuvent alors ĂȘtre analysĂ©es en temps rĂ©el pour diverses applications. Ce concept, qui constitue le fondement des techniques ASP, est dĂ©crit au chapitre 2. En se basant sur ces principes de dispersion, le prĂ©sent travail contribue au dĂ©veloppement de nouveaux systĂšmes et composantes ASP ainsi qu’au dĂ©veloppement de nouvelles DDS.----------Abstract With the ever increasing demand on higher spectral efficiencies and the related emergence of ultra-wideband (UWB) systems, monitoring RF environments in real-time has become of paramount interest. This is traditionally done using real-time signal processing techniques based on either digital or analog approaches. Digital devices are most attractive at low frequencies due to their high flexibility, compact size, low cost, and strong reliability. However, at higher frequencies, such as millimeter-wave frequencies, digital devices suffer of fundamental issues, such as poor performance, high cost for A/D and D/A converters, and excessive power consumption. At such frequencies, analog devices and systems are required for real-time signal processing applications. Owing to their fundamentally analog mode of operation, these systems are referred to as Analog Signal Processors, and the operation as Analog Signal Processing (ASP). This dissertation presents the most recent advances in these ASP concepts which are introduced in Chapter 1 along with the contribution of this thesis in this domain. The core of an analog real-time signal processor is a dispersive delay structure (DDS). In a dispersive structure, the group velocity vg is a function of frequency, which results in a frequency-dependent group delay. Consequently, a wide-band signal traveling along such a structure experiences time spreading, since its different spectral components travel with different group velocities and are therefore temporally rearranged. By exploiting this temporal rearrangement, the various spectral components of a wideband signal can be directly mapped onto time domain and can then be processed in real-time for various applications. This concept is described in Chapter 2 which forms the background of ASP techniques. Based on these dispersion principles, this work contributes to the development of novel ASP systems and devices along with the developments of novel DDSs. Two types of DDSs are used in this work: a) Composite Right/Left-Handed (CRLH) transmission lines (TL), and b) all-pass dispersive structures. In particular, the all-pass dispersive delay networks are investigated in greater details based on C-section all-pass networks in various configurations along with novel synthesis procedures and electromagnetic analysis to synthesize arbitrary group delay responses of the DDSs

    Antennas and Propagation Aspects for Emerging Wireless Communication Technologies

    Get PDF
    The increasing demand for high data rate applications and the delivery of zero-latency multimedia content drives technological evolutions towards the design and implementation of next-generation broadband wireless networks. In this context, various novel technologies have been introduced, such as millimeter wave (mmWave) transmission, massive multiple input multiple output (MIMO) systems, and non-orthogonal multiple access (NOMA) schemes in order to support the vision of fifth generation (5G) wireless cellular networks. The introduction of these technologies, however, is inextricably connected with a holistic redesign of the current transceiver structures, as well as the network architecture reconfiguration. To this end, ultra-dense network deployment along with distributed massive MIMO technologies and intermediate relay nodes have been proposed, among others, in order to ensure an improved quality of services to all mobile users. In the same framework, the design and evaluation of novel antenna configurations able to support wideband applications is of utmost importance for 5G context support. Furthermore, in order to design reliable 5G systems, the channel characterization in these frequencies and in the complex propagation environments cannot be ignored because it plays a significant role. In this Special Issue, fourteen papers are published, covering various aspects of novel antenna designs for broadband applications, propagation models at mmWave bands, the deployment of NOMA techniques, radio network planning for 5G networks, and multi-beam antenna technologies for 5G wireless communications

    1-D broadside-radiating leaky-wave antenna based on a numerically synthesized impedance surface

    Get PDF
    A newly-developed deterministic numerical technique for the automated design of metasurface antennas is applied here for the first time to the design of a 1-D printed Leaky-Wave Antenna (LWA) for broadside radiation. The surface impedance synthesis process does not require any a priori knowledge on the impedance pattern, and starts from a mask constraint on the desired far-field and practical bounds on the unit cell impedance values. The designed reactance surface for broadside radiation exhibits a non conventional patterning; this highlights the merit of using an automated design process for a design well known to be challenging for analytical methods. The antenna is physically implemented with an array of metal strips with varying gap widths and simulation results show very good agreement with the predicted performance

    Beam scanning by liquid-crystal biasing in a modified SIW structure

    Get PDF
    A fixed-frequency beam-scanning 1D antenna based on Liquid Crystals (LCs) is designed for application in 2D scanning with lateral alignment. The 2D array environment imposes full decoupling of adjacent 1D antennas, which often conflicts with the LC requirement of DC biasing: the proposed design accommodates both. The LC medium is placed inside a Substrate Integrated Waveguide (SIW) modified to work as a Groove Gap Waveguide, with radiating slots etched on the upper broad wall, that radiates as a Leaky-Wave Antenna (LWA). This allows effective application of the DC bias voltage needed for tuning the LCs. At the same time, the RF field remains laterally confined, enabling the possibility to lay several antennas in parallel and achieve 2D beam scanning. The design is validated by simulation employing the actual properties of a commercial LC medium

    Design and analysis of wideband passive microwave devices using planar structures

    Get PDF
    A selected volume of work consisting of 84 published journal papers is presented to demonstrate the contributions made by the author in the last seven years of his work at the University of Queensland in the area of Microwave Engineering. The over-arching theme in the author’s works included in this volume is the engineering of novel passive microwave devices that are key components in the building of any microwave system. The author’s contribution covers innovative designs, design methods and analyses for the following key devices and associated systems: Wideband antennas and associated systems Band-notched and multiband antennas Directional couplers and associated systems Power dividers and associated systems Microwave filters Phase shifters Much of the motivation for the work arose from the desire to contribute to the engineering o

    Ultra Wideband

    Get PDF
    Ultra wideband (UWB) has advanced and merged as a technology, and many more people are aware of the potential for this exciting technology. The current UWB field is changing rapidly with new techniques and ideas where several issues are involved in developing the systems. Among UWB system design, the UWB RF transceiver and UWB antenna are the key components. Recently, a considerable amount of researches has been devoted to the development of the UWB RF transceiver and antenna for its enabling high data transmission rates and low power consumption. Our book attempts to present current and emerging trends in-research and development of UWB systems as well as future expectations

    High Gain Broadband mm-Wave Antenna Arrays for Short-range Wireless Communication Systems

    Get PDF
    Recently, the ever-increasing demand for fifth-generation (5G) wireless applications has turned millimeter-wave (mm-wave) multi-beam array antenna into quite a promising research direction. Besides offering a remarkable bandwidth for high-speed wireless connectivity, the short wavelengths (1 to 10 mm) of mm-wave signals makes the size of the antenna array with beamforming network (BFN) compatible with a transceiver front-end. The high losses associated with mm-wave wireless links and systems considered the foremost challenge and may restrict the wireless communication range. Therefore, a wideband substrate integrated waveguide (SIW)-based antenna with high gain and beam scanning capabilities would be a solution for these challenges, as it can increase the coverage area of mm-wave wireless systems and mitigate the multipath interference to achieve a high signal to noise (S/N) ratio, and thereby fulfill the link budget requirements. This thesis focuses on the analysis and design of single- and multi-beam mm-wave antenna arrays based on SIW technology to fulfill the growing demand for wideband high-gain planar antenna arrays with beam steering capability at V-band. A tapered slot antenna (TSA) and cavity-backed patch antenna are used as the main radiators in these systems to achieve high-gain and high efficiency over a wide range of operating frequencies. Accordingly, numerous design challenges and BFN-related issues have been addressed in this work. Firstly, an antipodal Fermi tapered slot antenna (AFTSA) with sine-shaped corrugations is proposed at V-band. The antenna provides a flat measured gain of 20 dB with a return loss better than 22 dB. In addition, A broadband double-layer SIW-to-slotline transition is proposed to feed a planar linearly tapered slot antenna (PLTSA) covering the band 46-72 GHz. This new feeding technique, which addresses the bandwidth limits of regular microstrip-to-slotline transitions and avoids the bond wires and air bridges, is utilized to feed a 1x4 SIW-based PLTSA array. Secondly, a new cavity-backed aperture-coupled patch antenna with overlapped 1-dB gain and impedance bandwidth of 43.4 % (56-87 GHz) for |S11| < -10 dB and an average gain of 8.2 dBi is designed. A detailed operating principle is presented. Based on the proposed element, an SIW based 1x8 array is constructed, whose beam-shape is synthesized by amplitude tapering according to Taylor distribution to reduce the sidelobe level. Moreover, a four-layered 4x4 cavity-backed antenna array with a low-loss full-corporate SIW feed network is implemented for gain and aperture efficiency enhancement. The measured results exhibited a bandwidth of 38.4 % (55.2-81.4 GHz) for |S11| < -10 dB and a gain of 20.5 dBi. A single-layer right-angle transition between SIW and air-filled WR15 waveguide along with an equivalent circuit model is introduced and used to measure the performance of both proposed linear and planar arrays. Thirdly, two 1-D scanning multi-beam array designs based on SIW technology, at 60 GHz, have been presented. The first design is a compact multi-beam scanning 4x4 slot antenna array with broadside radiation. The BFN is implemented using a dual-layer 4x4 Butler matrix, where the 450 and 00 phase shifters are designed on a separate layer with different permittivity, resulting in a significant size reduction compared to a conventional single layer. A detailed theoretical analysis, principle of operation and the circuit-model of the proposed phase shifter have been discussed, showing less desperation characteristics compared to ordinary phase shifters. The measured results show an azimuthal coverage of 1210. The second design is a wideband high gain multi-beam tapered slot antenna array with end-fire radiation. An SIW Butler matrix with a modified hybrid crossover is used as a BFN. The fabricated prototype exhibits a field of view of 970 in the azimuthal plane, with measured gain ranges from 12.7 to 15.6 dBi. Lastly, a novel three-layered SIW-fed cavity-backed linearly polarized (LP) patch antenna element is presented, covering a bandwidth of 36.2 % (53-76.4 GHz) with a flat gain ranging from 7.6 to 8.2 dBi. A compact two-layered beam forming network is designed with a size reduction of 28 % compared to a standard one-layered BFN without affecting its s-parameters. The results show that the impedance bandwidth is 31.1 % (51.5-70.5 GHz) for |S11|<-16 dB with an average insertion loss of 1.3 dB. The proposed antenna element and BFN are employed to form a compact 2x2 multibeam array at 60 GHz for 2-D scanning applications. The array shows a bandwidth better than 27 % with a radiation gain of up to 12.4 dBi and radiation efficiency of 80%. The multi-beam array features four tilted beams at 330 from a boresight direction with 450, 1350, 2250 and 3150 in azimuth directions, i.e., on e beam in each quadrant

    Autonomous smart antenna systems for future mobile devices

    Get PDF
    Along with the current trend of wireless technology innovation, wideband, compact size, low-profile, lightweight and multiple functional antenna and array designs are becoming more attractive in many applications. Conventional wireless systems utilise omni-directional or sectored antenna systems. The disadvantage of such antenna systems is that the electromagnetic energy, required by a particular user located in a certain direction, is radiated unnecessarily in every direction within the entire cell, hence causing interference to other users in the system. In order to limit this source of interference and direct the energy to the desired user, smart antenna systems have been investigated and developed. This thesis presents the design, simulation, fabrication and full implementation of a novel smart antenna system for future mobile applications. The design and characterisation of a novel antenna structure and four-element liner array geometry for smart antenna systems are proposed in the first stage of this study. Firstly, a miniaturised microstrip-fed planar monopole antenna with Archimedean spiral slots to cover WiFi/Bluetooth and LTE mobile applications has been demonstrated. The fundamental structure of the proposed antenna element is a circular patch, which operates in high frequency range, for the purpose of miniaturising the circuit dimension. In order to achieve a multi-band performance, Archimedean spiral slots, acting as resonance paths, have been etched on the circular patch antenna. Different shapes of Archimedean spiral slots have been investigated and compared. The miniaturised and optimised antenna achieves a bandwidth of 2.2GHz to 2.9GHz covering WiFi/Bluetooth (2.45GHz) and LTE (2.6GHz) mobile standards. Then a four-element linear antenna array geometry utilising the planar monopole elements with Archimedean spiral slots has been described. All the relevant parameters have been studied and evaluated. Different phase shifts are excited for the array elements, and the main beam scanning range has been simulated and analysed. The second stage of the study presents several feeding network structures, which control the amplitude and phase excitations of the smart antenna elements. Research begins with the basic Wilkinson power divider configuration. Then this thesis presents a compact feeding network for circular antenna array, reconfigurable feeding networks for tuning the operating frequency and polarisations, a feeding network on high resistivity silicon (HRS), and an ultrawide-band (UWB) feeding network covering from 0.5GHz to 10GHz. The UWB feeding network is used to establish the smart antenna array system. Different topologies of phase shifters are discussed in the third stage, including ferrite phase shifters and planar phase shifters using switched delay line and loaded transmission line technologies. Diodes, FETs, MMIC and MEMS are integrated into different configurations. Based on the comparison, a low loss and high accurate Hittite MMIC analogue phase shifter has been selected and fully evaluated for this implementation. For the purpose of impedance matching and field matching, compact and ultra wideband CPW-to-Microstrip transitions are utilised between the phase shifters, feeding network and antenna elements. Finally, the fully integrated smart antenna array achieves a 10dB reflection coefficient from 2.25GHz to 2.8GHz, which covers WiFi/Bluetooth (2.45GHz) and LTE (2.6GHz) mobile applications. By appropriately controlling the voltage on the phase shifters, the main beam of the antenna array is steered ±50° and ±52°, for 2.45GHz and 2.6GHz, respectively. Furthermore, the smart antenna array demonstrates a gain of 8.5dBi with 40° 3dB bandwidth in broadside direction, and has more than 10dB side lobe level suppression across the scan. The final stage of the study investigates hardware and software automatic control systems for the smart antenna array. Two microcontrollers PIC18F4550 and LPC1768 are utilised to build the control PCBs. Using the graphical user interfaces provided in this thesis, it is able to configure the beam steering of the smart antenna array, which allows the user to analyse and optimise the signal strength of the received WiFi signals around the mobile device. The design strategies proposed in this thesis contribute to the realisation of adaptable and autonomous smart phone systems
    corecore