17 research outputs found

    Millimeter-Wave and Terahertz Transceivers in SiGe BiCMOS Technologies

    Get PDF
    This invited paper reviews the progress of silicon–germanium (SiGe) bipolar-complementary metal–oxide–semiconductor (BiCMOS) technology-based integrated circuits (ICs) during the last two decades. Focus is set on various transceiver (TRX) realizations in the millimeter-wave range from 60 GHz and at terahertz (THz) frequencies above 300 GHz. This article discusses the development of SiGe technologies and ICs with the latter focusing on the commercially most important applications of radar and beyond 5G wireless communications. A variety of examples ranging from 77-GHz automotive radar to THz sensing as well as the beginnings of 60-GHz wireless communication up to THz chipsets for 100-Gb/s data transmission are recapitulated. This article closes with an outlook on emerging fields of research for future advancement of SiGe TRX performance

    24 GHz low-power switch-channel CMOS transceiver for wireless localization

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.A 24 GHz low-power transceiver is designed, fabricated, and characterized using 130 nm complementary metal-oxide semiconductor (CMOS) process. The designed transceiver is targeted for frequency-modulated-continuous-wave (FMCW) wireless local positioning. The transceiver includes four switchable receiving channels, one transmitting channel and local-oscillator generation circuitries. Several power-saving techniques are implemented, such as switch channel and adaptive mixer biasing. The design aspects of the low-power circuit blocks and integration considerations are presented in details. The integrated transceiver has a chip area of only 2.2 mm × 1.7 mm. In transmitting mode the transceiver achieves an output power of 4 dBm and phase noise of −90 dBc/Hz at 1 MHz, while consuming 75 mW power consumption under 1.5 V power supply. In switch-channel receiving mode the transceiver demonstrates 31 dB gain and 6 dB noise figure with 65 mW power consumption. The transceiver measurements compare well with the simulated results and achieve state-of-the-art performance with very low-power consumption.BMBF, 16SV3654, Low Power Wireless Sensor Network with Localisation (LOWILO

    Hybrid Beam-Steering OFDM-MIMO Radar: High 3-D Resolution With Reduced Channel Count

    Get PDF
    We report on the realization of a multichannel imaging radar that achieves uniform 2-D cross-range resolution by means of a linear array of a special form of leaky-wave antennas. The presented aperture concept enables a tradeoff between the available range resolution and a reduction in the number of channels required for a given angular resolution. The antenna front end is integrated within a multichannel radar based on stepped-carrier orthogonal frequency-division modulation, and the advantages and challenges specific to this combination are analyzed with respect to signal processing and a newly developed calibration routine. The system concept is fully implemented and verified in the form of a mobile demonstrator capable of soft real-time 3-D processing. By combining radio frequency (RF) components operating in the W-band (85-105 GHz) with the presented aperture, a 3-D resolution of less than 1.5° x 1.5° x 15 cm is demonstrated using only eight transmitters and eight receivers

    Non-Contact Human Motion Sensing Using Radar Techniques

    Get PDF
    Human motion analysis has recently gained a lot of interest in the research community due to its widespread applications. A full understanding of normal motion from human limb joint trajectory tracking could be essential to develop and establish a scientific basis for correcting any abnormalities. Technology to analyze human motion has significantly advanced in the last few years. However, there is a need to develop a non-invasive, cost effective gait analysis system that can be functional indoors or outdoors 24/7 without hindering the normal daily activities for the subjects being monitored or invading their privacy. Out of the various methods for human gait analysis, radar technique is a non-invasive method, and can be carried out remotely. For one subject monitoring, single tone radars can be utilized for motion capturing of a single target, while ultra-wideband radars can be used for multi-subject tracking. But there are still some challenges that need to be overcome for utilizing radars for motion analysis, such as sophisticated signal processing requirements, sensitivity to noise, and hardware imperfections. The goal of this research is to overcome these challenges and realize a non-contact gait analysis system capable of extracting different organ trajectories (like the torso, hands and legs) from a complex human motion such as walking. The implemented system can be hugely beneficial for applications such as treating patients with joint problems, athlete performance analysis, motion classification, and so on

    A Fully integrated D-band Direct-Conversion I/Q Transmitter and Receiver Chipset in SiGe BiCMOS Technology

    Get PDF
    This paper presents design and characterization of single-chip 110-170 GHz (D-band) direct conversion in-phase/quadrature-phase (I/Q) transmitter and receiver monolithic microwave integrated circuits (MMICs), realized in a 130 nm SiGe BiCMOS process with ft/fmax of 250 GHz/370 GHz. The chipset is suitable for low power wideband communication and can be used in both homodyne and heterodyne architectures. The Transmitter chip consists of a six-stage power amplifier, an I/Q modulator, and a LO multiplier chain. The LO multiplier chain consists of frequency sixtupler followed by a two-stage amplifier. It exhibits a single sideband conversion gain of 23 dB and saturated output power of 0 dBm. The 3 dB RF bandwidth is 31 GHz from 114 to 145 GHz. The receiver includes a low noise amplifier, I/Q demodulator and x6 multiplier chain at the LO port. The receiver provides a conversion gain of 27 dB and has a noise figure of 10 dB. It has 3 dB RF bandwidth of 28 GHz from 112-140 GHz. The transmitter and receiver have dc power consumption of 240 mW and 280 mW, respectively. The chip area of each transmitter and receiver circuit is 1.4 mm x 1.1 mm

    Integrated Communication and Radar Scheme for Future Intelligent Transportation Systems

    Get PDF
    RÉSUMÉ Grâce à son impact social et économique, la journée mondiale de la santé 2004 a été dédiée à la sécurité routière. Le thème suivant : « La sécurité routière n‘est pas accidentelle» a été abordé. Suite à cette rencontre, une attention toute particulière a été donnée à la problématique des accidents de la route. Afin d‘augmenter la sécurité sur les routes et diminuer le nombre d‘accidents, des systèmes intelligents de transport (ITS) ont été proposés. Ces systèmes utilisent les technologies avancées de communication et de détection. La structure ITS associe les fonctionnalités des Radars et des communications sans fils, permettant de rendre les futurs véhicules intelligents autonomes et collaboratifs. Ces deux fonctions peuvent être réalisées en utilisant deux systèmes radiofréquences individuels et indépendants. Toutefois, une meilleure solution consiste à intégrer, dans un seul dispositif, le système de communication et le radar. Ceci permet d‘apporter de nombreux avantages comme par exemple la simplification et la miniaturisation du système, sa reconfigurabilité, l‘augmentation de son efficacité, et enfin cela permettrait de réduire fortement ses coûts de développement et de réalisation, élément clé pour réussir la commercialisation du véhicule intelligent. Intrinsèquement, le fonctionnement des communications sans fils et des Radar ne sont pas compatibles. En effet, ils requièrent des techniques de conception et d‘implémentations différentes, ce qui les rend difficilement intégrables en un seul système. Afin de répondre aux grands défis technologiques présentés par cette intégration fonctionnelle, cette thèse de doctorat présente un développement compréhensif des systèmes intégrés de communication sans-fil et radar (iCars), placés dans un seul dispositif émetteur-récepteur et destinés aux futurs systèmes intelligents de transport. Premièrement, après une recherche bibliographique approfondie, une nouvelle technique de modulation est proposée. Dans cette technique, les signaux radar et les signaux de communication sont arrangés en créneaux temporels séquentiels pendant un cycle d‘opération, minimisant ainsi leurs interférences mutuelles. Cette technique permet d‘obtenir une agilité temporelle et/ou une reconfigurabilité fonctionnelle, par l‘ajustement adaptatif ou cognitif de toutes les durées de modulation de la forme d‘onde, en accord avec les situations spécifiques de l‘utilisation.----------ABSTRACT Due to its growing social and economic impact, the world health day of 2004 was dedicated to road safety with its theme as ―Road safety is no accident‖. Thereafter, road traffic accidents have received unprecedented attention. In order to improve road safety, intelligent transportation systems (ITSs) have been proposed and deployed by making use of advanced information and communication technologies. Within the framework of ITSs, both wireless communication and radar sensing functions are indispensable for autonomous and cooperative operations of future intelligent vehicles (IVs). These two functions can definitely be achieved by using two individual and independent wireless systems. However, an attractive solution would be to integrate both communication and radar functions within a single transceiver platform, which could bring a lot of benefits such as system simplification and miniaturization, functional reconfiguration and fusion (mutual penetration and rapid processing/control of information), and especially efficiency enhancement and cost reduction that are the keys to the successful development and marketing of IVs. Intrinsically, wireless communication and radar systems have incompatible operation principles, which require different design considerations and system implementations with respect to modulation techniques, required bandwidth, signal propagation and detection. To respond to these unprecedented design and technological challenges posed by the functional integration, this PhD thesis presents comprehensive study and development of integrated communication and radar systems (iCars) based on a single transceiver platform for future ITSs. Following a broad and in-depth literature review, first of all, a novel modulation scheme is proposed in this work, in which radar and communication signals are arranged in sequential time slots of one operation cycle and therefore, their interference is minimized. Also, time-agility or flexible functional reconfiguration can be easily achieved by adaptively or cognitively adjusting all software-programmable time durations in the modulation waveform according to usage situations. Moreover, functional fusion between two operation modes can be made possible from the following two aspects. One is that targets‘ ranges and velocities obtained through the radar mode can be used in the communication mode to mitigate multipath fading and compensate the Doppler spreading effect caused by the mobility of onboard units

    Concepts for Short Range Millimeter-wave Miniaturized Radar Systems with Built-in Self-Test

    Get PDF
    This work explores short-range millimeter wave radar systems, with emphasis on miniaturization and overall system cost reduction. The designing and implementation processes, starting from the system level design considerations and characterization of the individual components to final implementation of the proposed architecture are described briefly. Several D-band radar systems are developed and their functionality and performances are demonstrated

    Development of a Multichannel Wideband Radar Demonstrator

    Get PDF
    With the rise of software defined radios (SDR) and the trend towards integrating more RF components into MMICs the cost and complexity of multichannel radar develop- ment has gone down. High-speed RF data converters have seen continuous increases in both sampling rate and resolution, further rendering a growing subset of components in an RF chain unnecessary. A recent development in this trend is the Xilinx RF- SoC, which integrates multiple high speed data converters into the same package as an FPGA. The Center for Remote Sensing of Ice Sheets (CReSIS) is regularly upgrading its suite of sensor platforms spanning from HF depth sounders to Ka band altimeters. A radar platform was developed around the RFSoC to demonstrate the capabilities of the chip when acting as a digital backend and evaluate its role in future radar designs at CReSIS. A new ultra-wideband (UWB) FMCW RF frontend was designed that con- sists of multiple transmit and receive modules with a 6 GHz bandwidth centered at 5 GHz. An antenna array was constructed out of Vivaldi elements to validate radar system performance. Firmware developed for the RFSoC enables radar features such as beam forming, frequency notching, dynamic stretch processing, and variable gain correction. The feature set presented here may prove useful in future sensor platforms used for the remote sensing of snow, soil moisture, or crop canopies

    Analysis and Design of Radio Frequency Integrated Circuits for Breast Cancer Radar Imaging in CMOS Technology

    Get PDF
    Breast cancer is by far the most incident tumor among female population. Early stage prevention is a key factor in delivering long term survival of breast cancer patients. X-ray mammography is the most commonly used diagnostic technique to detect non-palpable tumors. However, 10-30% of tumors are missed by mammography and ionizing radiations together with breast compression do not lead to comfort in patient treatment. In this context, ultrawideband microwave radar technology is an attractive alternative. It relies on the dielectric contrast of normal and malignant tissues at microwave frequencies to detect and locate tumors inside the breast. This work presents the analysis and design of radio frequency integrated circuits for breast cancer imaging in CMOS technology. The first part of the thesis concerns the system analysis. A behavioral model of two different transceiver architectures for UWB breast cancer imaging employing a SFCW radar system are presented. A mathematical model of the direct conversion and super heterodyne architectures together with a numerical breast phantom are developed. FDTD simulations data are used to on the behavioral model to investigate the limits of both architectures from a circuit-level point of view. Insight is given into I/Q phase inaccuracies and their impact on the quality of the final reconstructed images. The result is that the simplicity of the direct conversion architecture makes the receiver more robust toward the critical impairments for this application. The second part of the thesis is dedicated to the circuit design. The main achievement is a 65nm CMOS 2-16GHz stepped frequency radar transceiver for medical imaging. The RX features 36dB conversion gain, >29dBm compression point, 7dB noise figure, and 30Hz 1/f noise corner. The TX outputs 14dBm with >40dBc harmonic rejection and <109dBc/Hz phase noise at 1MHz offset. Overall power dissipation is 204mW from 1.2V supply. The radar achieves 3mm resolution within the body, and 107dB dynamic range, a performance enabling the use for breast cancer diagnostic imaging. To further assess the capabilities of the proposed radar, a physical breast phantom was synthesized and two targets mimicking two tumors were buried inside the breast. The targets are clearly identified and correctly located, effectively proving the performance of the designed radar as a possible tool for breast cancer detection
    corecore