346 research outputs found

    A Comparative Study of Energy Efficient Medium Access Control Protocols in Wireless Sensor Networks

    Get PDF
    This project investigates energy usage in three energy-efficient WSN MAC protocols (AS-MAC, SCP-MAC, and Crankshaft) on TelosB wireless sensors. It additionally presents BAS-MAC, an energy-efficient protocol of our own design. Our evaluations show that in single-hop networks with large send intervals and staggered sending, AS-MAC is best in the local gossip and convergecast scenarios, while SCP-MAC is best overall in the broadcast scenario. We conjecture that Crankshaft would perform best in extremely dense hybrid (unicast and broadcast) network topologies, especially those which broadcast frequently. Finally, BAS-MAC would be optimal in networks which utilize hybrid traffic with infrequent broadcasts, and where broadcasting is performed by motes that do not have an unlimited power source

    A survey of localization in wireless sensor network

    Get PDF
    Localization is one of the key techniques in wireless sensor network. The location estimation methods can be classified into target/source localization and node self-localization. In target localization, we mainly introduce the energy-based method. Then we investigate the node self-localization methods. Since the widespread adoption of the wireless sensor network, the localization methods are different in various applications. And there are several challenges in some special scenarios. In this paper, we present a comprehensive survey of these challenges: localization in non-line-of-sight, node selection criteria for localization in energy-constrained network, scheduling the sensor node to optimize the tradeoff between localization performance and energy consumption, cooperative node localization, and localization algorithm in heterogeneous network. Finally, we introduce the evaluation criteria for localization in wireless sensor network

    Multiradio sensing systems for home area networking and building management

    Get PDF
    Many WSN systems use proprietary systems so interoperability between different devices and systems can be at best difficult with various protocols (standards based and non-standards based) used (ZigBee, EnOcean, MODBUS, KNEX, DALI, Powerline, etc.). This work describes the development of a novel low power consumption multiradio system incorporating 32-bit ARM-Cortex microcontroller and multiple radio interfaces - ZigBee/6LoWPAN/Bluetooth LE (Low Energy)/868MHz platform. The multiradio sensing system lends itself to interoperability and standardization between the different technologies which typically make up a heterogeneous network of sensors for both standards based and non-standards based systems. The configurability of the system enables energy savings, and increases the range between single points enabling the implementation of adaptive networking architectures of different configurations. The system described provides a future-proof wireless platform for Home Automation Networks with regards to the network heterogeneity in terms of hardware and protocols defined as being critical for use in the built environment. This system is the first to provide the capability to communicate in the 2.4GHz band as well as the 868MHz band as well as the feature of multiboot capability

    A centralized localization algorithm for prolonging the lifetime of wireless sensor networks using particle swarm optimization in the existence of obstacles

    Get PDF
    The evolution in micro-electro-mechanical systems technology (MEMS) has triggered the need for the development of wireless sensor network (WSN). These wireless sensor nodes has been used in many applications at many areas. One of the main issues in WSN is the energy availability, which is always a constraint. In a previous research, a relocating algorithm for mobile sensor network had been introduced and the goal was to save energy and prolong the lifetime of the sensor networks using Particle Swarm Optimization (PSO) where both of sensing radius and travelled distance had been optimized in order to save energy in long-term and shortterm. Yet, the previous research did not take into account obstacles’ existence in the field and this will cause the sensor nodes to consume more power if obstacles are exists in the sensing field. In this project, the same centralized relocating algorithm from the previous research has been used where 15 mobile sensors deployed randomly in a field of 100 meter by 100 meter where these sensors has been deployed one time in a field that obstacles does not exist (case 1) and another time in a field that obstacles existence has been taken into account (case 2), in which these obstacles has been pre-defined positions, where these two cases applied into two different algorithms, which are the original algorithm of a previous research and the modified algorithm of this thesis. Particle Swarm Optimization has been used in the proposed algorithm to minimize the fitness function. Voronoi diagram has also used in order to ensure that the mobile sensors cover the whole sensing field. In this project, the objectives will be mainly focus on the travelling distance, which is the mobility module, of the mobile sensors in the network because the distance that the sensor node travels, will consume too much power from this node and this will lead to shortening the lifetime of the sensor network. So, the travelling distance, power consumption and lifetime of the network will be calculated in both cases for original algorithm and modified algorithm, which is a modified deployment algorithm, and compared between them. Moreover, the maximum sensing range is calculated, which is 30 meter, by using the binary sensing model even though the sensing module does not consume too much power compared to the mobility module. Finally, the comparison of the results in the original method will show that this algorithm is not suitable for an environment where obstacle exist because sensors will consume too much power compared to the sensors that deployed in environment that free of obstacles. While the results of the modified algorithm of this research will be more suitable for both environments, that is environment where obstacles are not exist and environment where obstacles are exist, because sensors in this algorithm .will consume almost the same amount of power at both of these environments

    A critical analysis of research potential, challenges and future directives in industrial wireless sensor networks

    Get PDF
    In recent years, Industrial Wireless Sensor Networks (IWSNs) have emerged as an important research theme with applications spanning a wide range of industries including automation, monitoring, process control, feedback systems and automotive. Wide scope of IWSNs applications ranging from small production units, large oil and gas industries to nuclear fission control, enables a fast-paced research in this field. Though IWSNs offer advantages of low cost, flexibility, scalability, self-healing, easy deployment and reformation, yet they pose certain limitations on available potential and introduce challenges on multiple fronts due to their susceptibility to highly complex and uncertain industrial environments. In this paper a detailed discussion on design objectives, challenges and solutions, for IWSNs, are presented. A careful evaluation of industrial systems, deadlines and possible hazards in industrial atmosphere are discussed. The paper also presents a thorough review of the existing standards and industrial protocols and gives a critical evaluation of potential of these standards and protocols along with a detailed discussion on available hardware platforms, specific industrial energy harvesting techniques and their capabilities. The paper lists main service providers for IWSNs solutions and gives insight of future trends and research gaps in the field of IWSNs

    PhyNetLab: An IoT-Based Warehouse Testbed

    Full text link
    Future warehouses will be made of modular embedded entities with communication ability and energy aware operation attached to the traditional materials handling and warehousing objects. This advancement is mainly to fulfill the flexibility and scalability needs of the emerging warehouses. However, it leads to a new layer of complexity during development and evaluation of such systems due to the multidisciplinarity in logistics, embedded systems, and wireless communications. Although each discipline provides theoretical approaches and simulations for these tasks, many issues are often discovered in a real deployment of the full system. In this paper we introduce PhyNetLab as a real scale warehouse testbed made of cyber physical objects (PhyNodes) developed for this type of application. The presented platform provides a possibility to check the industrial requirement of an IoT-based warehouse in addition to the typical wireless sensor networks tests. We describe the hardware and software components of the nodes in addition to the overall structure of the testbed. Finally, we will demonstrate the advantages of the testbed by evaluating the performance of the ETSI compliant radio channel access procedure for an IoT warehouse

    A Review Paper on Wireless Body Area Network for Healthcare Monitoring Applications

    Get PDF
    Recent developments and technological advancements in wireless communication, MicroElectroMechanical Systems (MEMS) technology and integrated circuits has enabled low-power, intelligent , miniaturized, invasive/non-invasive micro and nano-technology sensor nodes strategically positioned in or around the human body to be used in diverse applications, such as personal health monitoring. Body area network (BAN) is the most advanced technology in wireless communications and electronics. The recent BAN?s applications prove how this becoming more demanding to each one. Some of these applications are medical applications, it is possible to implant, or wear, tiny health monitoring sensor nodes on the body so that the fundamental body parameters and the movements of the patient can be recorded and communicated to the medical amenities for further actions such as processing and diagnosis as well as it is also used in non-medical application areas such as entertainment, military. Apart from that BAN have specific hardware and network necessities with low power consumption
    • …
    corecore