118 research outputs found

    Design of Energy-Efficient A/D Converters with Partial Embedded Equalization for High-Speed Wireline Receiver Applications

    Get PDF
    As the data rates of wireline communication links increases, channel impairments such as skin effect, dielectric loss, fiber dispersion, reflections and cross-talk become more pronounced. This warrants more interest in analog-to-digital converter (ADC)-based serial link receivers, as they allow for more complex and flexible back-end digital signal processing (DSP) relative to binary or mixed-signal receivers. Utilizing this back-end DSP allows for complex digital equalization and more bandwidth-efficient modulation schemes, while also displaying reduced process/voltage/temperature (PVT) sensitivity. Furthermore, these architectures offer straightforward design translation and can directly leverage the area and power scaling offered by new CMOS technology nodes. However, the power consumption of the ADC front-end and subsequent digital signal processing is a major issue. Embedding partial equalization inside the front-end ADC can potentially result in lowering the complexity of back-end DSP and/or decreasing the ADC resolution requirement, which results in a more energy-effcient receiver. This dissertation presents efficient implementations for multi-GS/s time-interleaved ADCs with partial embedded equalization. First prototype details a 6b 1.6GS/s ADC with a novel embedded redundant-cycle 1-tap DFE structure in 90nm CMOS. The other two prototypes explain more complex 6b 10GS/s ADCs with efficiently embedded feed-forward equalization (FFE) and decision feedback equalization (DFE) in 65nm CMOS. Leveraging a time-interleaved successive approximation ADC architecture, new structures for embedded DFE and FFE are proposed with low power/area overhead. Measurement results over FR4 channels verify the effectiveness of proposed embedded equalization schemes. The comparison of fabricated prototypes against state-of-the-art general-purpose ADCs at similar speed/resolution range shows comparable performances, while the proposed architectures include embedded equalization as well

    Low-power 4-bit flash analogue to digital converter for ranging applications

    Get PDF
    A 4-bit 700 MS/s flash ADC is presented in 0.18 mu m CMOS. By lowering the kickback noise of the individual comparators it was possible to reduce the power consumption to 4.43 mW. Improved calibration capabilities resulted in an INL and DNL smaller than 0.25 LSB. These low nonlinearities give rise to 3.77 effective number of bits at the Nyquist input frequency and this in turn yields an overall figure of merit of 0.46 pJ per conversion step, the lowest figure of merit reported for ADCs with sampling rate above 500 MHz in 0.18 mu m CMOS

    Design of a low power switched-capacitor pipeline analog-to-digital converter

    Get PDF
    An Analog to Digital Converter (ADC) is a circuit which converts an analog signal into digital signal. Real world is analog, and the data processed by the computer or by other signal processing systems is digital. Therefore, the need for ADCs is obvious. In this thesis, several novel designs used to improve ADCs operation speed and reduce ADC power consumption are proposed. First, a high speed switched source follower (SSF) sample and hold amplifier without feedthrough penalty is implemented and simulated. The SSF sample and hold amplifier can achieve 6 Bit resolution with sampling rate at 10Gs/s. Second, a novel rail-to-rail time domain comparator used in successive approximation register ADC (SAR ADC) is implemented and simulated. The simulation results show that the proposed SAR ADC can only consume 1.3 muW with a 0.7 V power supply. Finally, a prototype pipeline ADC is implemented and fabricated in an IBM 90nm CMOS process. The proposed design is validated using measurement on a fabricated silicon IC, and the proposed 10-bit ADC achieves a peak signal-to-noise- and-distortion-ratio (SNDR) of 47 dB. This SNDR translates to a figure of merit (FOM) of 2.6N/conversion-step with a 1.2 V power supply

    Design and Implementation of a Novel Flash ADC for Ultra Wide Band Applications

    Get PDF
    This dissertation presents a design and implementation of a novel flash ADC architecture for ultra wide band applications. The advancement in wireless technology takes us in to a world without wires. Most of the wireless communication systems use digital signal processing to transmit as well as receive the information. The real world signals are analog. Due to the processing complexity of the analog signal, it is converted to digital form so that processing becomes easier. The development in the digital signal processor field is rapid due to the advancement in the integrated circuit technology over the last decade. Therefore, analog-to -digital converter acts as an interface in between analog signal and digital signal processing systems. The continuous speed enhancement of the wireless communication systems brings out huge demands in speed and power specifications of high-speed low-resolution analog-to -digital converters. Even though wired technology is a primary mode of communication, the quality and efficiency of the wireless technology allows us to apply to biomedical applications, in home services and even to radar applications. These applications are highly relying on wireless technology to send and receive information at high speed with great accuracy. Ultra Wideband (UWB) technology is the best method to these applications. A UWB signal has a bandwidth of minimum 500MHz or a fractional bandwidth of 25 percentage of its centre frequency. The two different technology standards that are used in UWB are multiband orthogonal frequency division multiplexing ultra wideband technology (MB-OFDM) and carrier free direct sequence ultra wideband technology (DS-UWB). ADC is the core of any UWB receiver. Generally a high speed flash ADC is used in DS-UWB receiver. Two different flash ADC architectures are proposed in this thesis for DS-UWB applications. The first design is a high speed five bit flash ADC architecture with a sampling rate of 5 GS/s. The design is verified using CADENCE tool with CMOS 90 nm technology. The total power dissipation of the ADC is 8.381 mW from power supply of 1.2 V. The die area of the proposed flash ADC is 186 μm × 210 μm (0.039 mm2). The proposed flash ADC is analysed and compared with other papers in the literature having same resolution and it is concluded that it has the highest speed of operation with medium power dissipation. iii The second design is a reconfigurable five bit flash ADC architecture with a sampling rate of 1.25 GS/s. The design is verified using CADENCE tool with UMC 180 nm technology. The total power dissipation of the ADC is 11.71 mW from power supply of 1.8 V. The die area of the implementation is 432 μm × 720 μm (0.31104 mm2). The chip tape out of the proposed reconfigurable flash ADC is made for fabrication

    A robust 2.4 GHz time-of-arrival based ranging system with sub-meter accuracy: feasibility study and realization of low power CMOS receiver

    Get PDF
    Draadloze sensornetwerken worden meer en meer aangewend om verschillende soorten informatie te verzamelen. De locatie, waar deze informatie verzameld is, is een belangerijke eigenschap en voor sommige toepassingen, zoals het volgen van personen of goederen, zelfs de meest belangrijke en mogelijkmakende factor. Om de positie van een sensor te bepalen, is een technologie nodig die de afstand tot een gekend referentiepunt schat. Door verschillende afstandsmetingen te combineren, is het mogelijk de absolute locatie van de node te berekenen
    corecore