22 research outputs found

    IEEE 802.11-Enabled Wake-Up Radio: use cases and applications

    Get PDF
    IEEE 802.11 is one of the most commonly used radio access technologies, being present in almost all handheld devices with networking capabilities. However, its energy-hungry communication modes are a challenge for the increased battery lifetime of such devices and are an obstacle for its use in battery-constrained devices such as the ones defined by many Internet of Things applications. Wake-up Radio (WuR) systems have appeared as a solution for increasing the energy efficiency of communication technologies by employing a secondary low-power radio interface, which is always in the active state and switches the primary transceiver (used for main data communication) from the energy-saving to the active operation mode. The high market penetration of IEEE 802.11 technology, together with the benefits that WuR systems can bring to this widespread technology, motivates this article’s focus on IEEE 802.11-basedWuR solutions. More specifically, we elaborate on the feasibility of such IEEE 802.11-based WuR solutions, and introduce the latest standardization efforts in this IEEE 802.11-based WuR domain, IEEE 802.11ba, which is a forthcoming IEEE 802.11 amendment, discussing its main features and potential use cases. As a use case consisting of green Wi-Fi application, we provide a proof-of-concept smart plug system implemented by a WuR that is activated remotely using IEEE 802.11 devices, evaluate its monetary and energy savings, and compare it with commercially available smart plug solutions. Finally, we discuss novel applications beyond the wake-up functionality that IEEE 802.11-enabled WuR devices can offer using a secondary radio, as well as applications that have not yet been considered by IEEE 802.11ba. As a result, we argue that the IEEE 802.11-based WuR solution will support a wide range of devices and deployments, for both low-rate and low-power communications, as well as high-rate transmissions.Postprint (author's final draft

    Contributions to IEEE 802.11-based long range communications

    Get PDF
    The most essential part of the Internet of Things (IoT) infrastructure is the wireless communication system that acts as a bridge for the delivery of data and control messages between the connected things and the Internet. Since the conception of the IoT, a large number of promising applications and technologies have been developed, which will change different aspects in our daily life. However, the existing wireless technologies lack the ability to support a huge amount of data exchange from many battery-driven devices, spread over a wide area. In order to support the IoT paradigm, IEEE 802.11ah is an Internet of Things enabling technology, where the efficient management of thousands of devices is a key function. This is one of the most promising and appealing standards, which aims to bridge the gap between traditional mobile networks and the demands of the IoT. To this aim, IEEE 802.11ah provides the Restricted Access Window (RAW) mechanism, which reduces contention by enabling transmissions for small groups of stations. Optimal grouping of RAW stations requires an evaluation of many possible configurations. In this thesis, we first discuss the main PHY and MAC layer amendments proposed for IEEE 802.11ah. Furthermore, we investigate the operability of IEEE 802.11ah as a backhaul link to connect devices over possibly long distances. Additionally, we compare the aforementioned standard with previous notable IEEE 802.11 amendments (i.e. IEEE 802.11n and IEEE 802.11ac) in terms of throughput (with and without frame aggregation) by utilizing the most robust modulation schemes. The results show an improved performance of IEEE 802.11ah (in terms of power received at long range while experiencing different packet error rates) as compared to previous IEEE 802.11 standards. Additionally, we expose the capabilities of future IEEE 802.11ah in supporting different IoT applications. In addition, we provide a brief overview of the technology contenders that are competing to cover the IoT communications framework. Numerical results are presented showing how the future IEEE 802.11ah specification offers the features required by IoT communications, thus putting forward IEEE 802.11ah as a technology to cater the needs of the Internet of Things paradigm. Finally, we propose an analytical model (named e-model) that provides an evaluation of the RAW onfiguration performance, allowing a fast adaptation of RAW grouping policies, in accordance to varying channel conditions. We base the e-model in known saturation models, which we adapted to include the IEEE 802.11ah’s PHY and MAC layer modifications and to support different bit rate and packet sizes. As a proof of concept, we use the proposed model to compare the performance of different grouping strategies,showing that the e-model is a useful analysis tool in RAW-enabled scenarios. We validate the model with existing IEEE 802.11ah implementation for ns-3.La clave del concepto Internet de las cosas (IoT) es que utiliza un sistema de comunicación inalámbrica, el cual actúa como puente para la entrega de datos y mensajes de control entre las "cosas" conectadas y el Internet. Desde la concepción del IoT, se han desarrollado gran cantidad de aplicaciones y tecnologías prometedoras que cambiarán distintos aspectos de nuestra vida diaria.Sin embargo, las tecnologías de redes computacionales inalámbricas existentes carecen de la capacidad de soportar las características del IoT, como las grandes cantidades de envío y recepción de datos desde múltiples dispositivos distribuidos en un área amplia, donde los dispositivos IoT funcionan con baterías. Para respaldar el paradigma del IoT, IEEE 802.11ah, la cual es una tecnología habilitadora del Internet de las cosas, para el cual la gestión eficiente de miles de dispositivos es una función clave. IEEE 802.11ah es uno de los estándares más prometedores y atractivos, desde su concepción orientada para IoT, su objetivo principal es cerrar la brecha entre las redes móviles tradicionales y la demandada por el IoT. Con este objetivo en mente, IEEE 802.11ah incluye entre sus características especificas el mecanismo de ventana de acceso restringido (RAW, por sus siglas en ingles), el cual define un nuevo período de acceso al canal libre de contención, reduciendo la misma al permitir transmisiones para pequeños grupos de estaciones. Nótese que para obtener una agrupación óptima de estaciones RAW, se requiere una evaluación de las distintas configuraciones posibles. En esta tesis, primero discutimos las principales mejoras de las capas PHY y MAC propuestas para IEEE 802.11ah. Además, investigamos la operatividad de IEEE 802.11ah como enlace de backhaul para conectar dispositivos a distancias largas. También, comparamos el estándar antes mencionado con las notables especificaciones IEEE 802.11 anteriores (es decir, IEEE 802.11n y IEEE 802.11ac), en términos de rendimiento (incluyendo y excluyendo la agregación de tramas de datos) y utilizando los esquemas de modulación más robustos. Los resultados muestran mejores resultados en cuanto al rendimiento de IEEE 802.11ah (en términos de potencia recibida a largo alcance, mientras se experimentan diferentes tasas de error de paquetes de datos) en comparación con los estándares IEEE 802.11 anteriores.Además, exponemos las capacidades de IEEE 802.11ah para admitir diferentes aplicaciones de IoT. A su vez, proporcionamos una descripción general de los competidores tecnológicos, los cuales contienden para cubrir el marco de comunicaciones IoT. También se presentan resultados numéricos que muestran cómo la especificación IEEE 802.11ah ofrece las características requeridas por las comunicaciones IoT, presentando así a IEEE 802.11ah como una tecnología que puede satisfacer las necesidades del paradigma de Internet de las cosas.Finalmente, proponemos un modelo analítico (denominado e-model) que proporciona una evaluación del rendimiento utilizando la característica RAW con múltiples configuraciones, el cual permite una rápida adaptación de las políticas de agrupación RAW, de acuerdo con las diferentes condiciones del canal de comunicación. Basamos el e-model en modelos de saturación conocidos, que adaptamos para incluir las modificaciones de la capa MAC y PHY de IEEE 802.11ah y para poder admitir diferentes velocidades de transmisión de datos y tamaños de paquetes. Como prueba de concepto, utilizamos el modelo propuesto para comparar el desempeño de diferentes estrategias de agrupación, mostrando que el e-model es una herramienta de análisis útil en escenarios habilitados para RAW. Cabe mencionar que también validamos el modelo con la implementación IEEE 802.11ah existente para ns-3

    Bandwidth-Based Wake-Up Radio solution through IEEE 802.11 technology

    Get PDF
    IEEE 802.11 consists of one of the most used wireless access technologies, which can be found in almost all consumer electronics devices available. Recently, Wake-up Radio (WuR) systems have emerged as a solution for energy-efficient communications. WuR mechanisms rely on using a secondary low-power radio interface that is always in the active operation mode and is in charge of switching the primary interface, used for main data exchange, from the power-saving state to the active mode. In this paper, we present a WuR solution based on IEEE 802.11 technology employing transmissions of legacy frames by an IEEE 802.11 standard-compliant transmitter during a Transmission Opportunity (TXOP) period. Unlike other proposals available in the literature, the WuR system presented in this paper exploits the PHY characteristics of modern IEEE 802.11 radios, where different signal bandwidths can be used on a per-packet basis. The proposal is validated through the Matlab software tool, and extensive simulation results are presented in a wide variety of scenario configurations. Moreover, insights are provided on the feasibility of the WuR proposal for its implementation in real hardware. Our approach allows the transmission of complex Wake-up Radio signals (i.e., including address field and other binary data) from legacy Wi-Fi devices (from IEEE 802.11n-2009 on), avoiding hardware or even firmware modifications intended to alter standard MAC/PHY behavior, and achieving a bit rate of up to 33 kbps.Postprint (published version

    An alternative to IEEE 802.11ba: wake-up radio with legacy IEEE 802.11 transmitters

    Get PDF
    Current standardization process for Wake-up Radio (WuR) within the IEEE 802.11 Working Group, known as the IEEE 802.11ba, has brought interest to the IEEE 802.11-related technologies for the implementation of WuR systems. This paper proposes a new WuR system, where the Wake-up Transmitter (WuTx) is based on the legacy IEEE 802.11 Orthogonal Frequency Division Modulation (OFDM) Physical Layer (PHY) specification. Using the IEEE 802.11, OFDM PHY makes it possible for an IEEE 802.11a/g/n/ac transmitter to operate as WuTx for this WuR system. The WuTx generates a Wake-up Signal (WuS) coded with an amplitude-based digital modulation, achieving a bit rate of 250 kbps. This modulation, which we call Peak-Flat modulation, can be received using low-power receivers. A simulated proof of concept of the WuTx based on the IEEE 802.11g is presented and evaluated using MATLAB WLAN Toolbox. A method to generate the Peak-Flat modulated WuS from an IEEE 802.11a/g standard-compliant transmitter, using only software-level access, is explained. In addition, two possible low-power Wake-up Receiver (WuRx) architectures capable of decoding the presented modulation are proposed. The design of those receivers is generic enough to be used as a reference to compare the performance of the Peak-Flat Modulation with the other state-of-the-art approaches. The evaluation results conclude that the Peak-Flat modulation has similar performance compared to the other IEEE 802.11 WuR solutions on the reference receivers. Moreover, this solution provides a notorious advantage: legacy OFDM-based IEEE 802.11 transmitters can generate the Peak-Flat modulated WuS.Postprint (published version

    Low-Power Wake-Up Receivers

    Get PDF
    The Internet of Things (IoT) is leading the world to the Internet of Everything (IoE), where things, people, intelligent machines, data and processes will be connected together. The key to enter the era of the IoE lies in enormous sensor nodes being deployed in the massively expanding wireless sensor networks (WSNs). By the year of 2025, more than 42 billion IoT devices will be connected to the Internet. While the future IoE will bring priceless advantages for the life of mankind, one challenge limiting the nowadays IoT from further development is the ongoing power demand with the dramatically growing number of the wireless sensor nodes. To address the power consumption issue, this dissertation is motivated to investigate low-power wake-up receivers (WuRXs) which will significantly enhance the sustainability of the WSNs and the environmental awareness of the IoT. Two proof-of-concept low-power WuRXs with focuses on two different application scenarios have been proposed. The first WuRX, implemented in a cost-effective 180-nm CMOS semiconductor technology, operates at 401−406-MHz band. It is a good candidate for application scenarios, where both a high sensitivity and an ultra-low power consumption are in demand. Concrete use cases are, for instance, medical implantable applications or long-range communications in rural areas. This WuRX does not rely on a further assisting semiconductor technology, such as MEMS which is widely used in state-of-the-art WuRXs operating at similar frequencies. Thus, this WuRX is a promising solution to low-power low-cost IoT. The second WuRX, implemented in a 45-nm RFSOI CMOS technology, was researched for short-range communication applications, where high-density conventional IoT devices should be installed. By investigation of the WuRX for operation at higher frequency band from 5.5 GHz to 7.5 GHz, the nowadays ever more over-traffic issues that arise at low frequency bands such as 2.4 GHz can be substantially addressed. A systematic, analytical research route has been carried out in realization of the proposed WuRXs. The thesis begins with a thorough study of state-of-the-art WuRX architectures. By examining pros and cons of these architectures, two novel architectures are proposed for the WuRXs in accordance with their specific use cases. Thereon, key WuRX parameters are systematically analyzed and optimized; the performance of relevant circuits is modeled and simulated extensively. The knowledge gained through these investigations builds up a solid theoretical basis for the ongoing WuRX designs. Thereafter, the two WuRXs have been analytically researched, developed and optimized to achieve their highest performance. Proof-of-concept circuits for both the WuRXs have been fabricated and comprehensively characterized under laboratory conditions. Finally, measurement results have verified the feasibility of the design concept and the feasibility of both the WuRXs

    Bluetooth Low Energy (BLE) data streaming and integration of BLE and 5G mobile connectivity implementation

    Get PDF
    Abstract. The energy-efficient wireless connectivity is among the crucial enabler technologies for the Internet of Things (IoT) employed throughout a great number of different verticals. The Bluetooth Low Energy (BLE) radio access technology is today among the most widely spread short-range wireless communication technologies for the energy-limited IoT devices available on the market. The thesis focuses on understanding and experimentally assessing the performance of the BLE technology with respect to the maximum communication link throughput and discovering the ways how BLE can be integrated with the 5th Generation Mobile Network (5G). To reach this goal, the study investigates the BLE technology focusing specifically on the parameters affecting the communication throughput, implements and carries the empirical throughput performance measurements for various architectures involving communication between embedded devices and the communication between an embedded device and a mobile terminal, and explore the means of boosting the communication performance range of BLE-enabled devices by integrating BLE with 5G and enabling streaming of the BLE data over 5G. Based on the study, it has been shown that the Nordic UART service achieves a BLE communication throughput of 92 kbps for most of the parameter configurations of connection interval, physical layer configuration, and data lengths. Based on the observed Phone-to-Server mean throughput of 23.11 Mbps, it can be stated that the overall throughput of the end-to-end system, which includes a Board-to-Phone BLE connection and a Phone-to-Server TCP/IP connection, is entirely reliant on the throughput of the BLE connection

    Digital forensics challenges and readiness for 6G Internet of Things (IoT) networks

    Get PDF
    The development of sixth-generation (6G) wireless communication technology is expected to provide super high-speed data transmission, and advanced network performance than the current fifth-generation (5G) and be fully functional by the 2030s. This development will have a significant impact and add improvements to digital extended reality (XR), autonomous systems, vehicular ad hoc networks (VANETs), artificial intelligence (AI), underwater communications, blockchain technology, pervasive biomedical informatics and smart cities built on the digital infrastructure backbone of the Internet of Things (IoT). The ubiquitous nature of this large-scale 6G-enabled IoT that offers faster connectivity capabilities and integrates both terrestrial and non-terrestrial networks will not only create new data security and privacy issues but also provide a treasure trove of digital evidence useful for digital forensic examiners investigating security incidents and cybercrime. However, for digital forensic examiners, evidence collection, preservation and analysis will become a priority in the successful deployment of 6G IoT networks. In this study, we define key applications of 6G network technology to the Internet of Things and its existing architectures. The survey introduces potential digital forensic challenges and related issues affecting digital forensic investigations specific to 6G IoT networks. Finally, we highlight and discuss forensic readiness and future research directions for identified challenges within the 6G IoT network environments
    corecore