243 research outputs found

    Multi-Gigabit Wireless data transfer at 60 GHz

    Full text link
    In this paper we describe the status of the first prototype of the 60 GHz wireless Multi-gigabit data transfer topology currently under development at University of Heidelberg using IBM 130 nm SiGe HBT BiCMOS technology. The 60 GHz band is very suitable for high data rate and short distance applications as for example needed in the HEP experments. The wireless transceiver consist of a transmitter and a receiver. The transmitter includes an On-Off Keying (OOK) modulator, an Local Oscillator (LO), a Power Amplifier (PA) and a BandPass Filter (BPF). The receiver part is composed of a BandPass- Filter (BPF), a Low Noise Amplifier (LNA), a double balanced down-convert Gilbert mixer, a Local Oscillator (LO), then a BPF to remove the mixer introduced noise, an Intermediate Amplifier (IF), an On-Off Keying demodulator and a limiting amplifier. The first prototype would be able to handle a data-rate of about 3.5 Gbps over a link distance of 1 m. The first simulations of the LNA show that a Noise Figure (NF) of 5 dB, a power gain of 21 dB at 60 GHz with a 3 dB bandwidth of more than 20 GHz with a power consumption 11 mW are achieved. Simulations of the PA show an output referred compression point P1dB of 19.7 dB at 60 GHz.Comment: Proceedings of the WIT201

    Mm-wave integrated wireless transceiver: enabling technology for high bandwidth short-range networking in cyber physical systems

    Get PDF
    Emerging application scenarios for Cyber Physical Systems often require the networking of sensing and actuation nodes at high data rate and through wireless links. Lot of surveillance and control systems adopt as input sensors distributed video cameras operating at different spectral ranges and covering different fields of view. Arrays of radio/light detection and ranging (Radar/Lidar) sensors are often used to detect the presence of targets, of their speeds, distance and direction. The relevant bandwidth requirement amounts to some Gbps. The wireless connection is essential for easy and flexible deployment of the sensing/actuation nodes. A key technology to keep low the size and weight of the nodes is the fully integration at mm-waves of wireless transceivers sustaining Gbps data rate. To this aim, this paper presents the design of 60 GHz transceiver key blocks (Low Noise Amplifier, Power Amplifier, Antenna) to ensure connection distances up to 10 m and data rate of several Gbps. Around 60 GHz there are freely-available (unlicensed) worldwide several GHz of bandwidth. By using a CMOS Silicon-on-Insulator technology RF, analog and digital baseband circuitry can be integrated single-chip minimizing noise coupling. At mm-wave the wavelength is few mm and hence even the antenna is integrated on chip reducing cost and size vs. off-chip antenna solutions. The proposed transceiver enables at physical layer the implementation in compact nodes of links with data rates of several Gbps and up to 10 m distance; this is suited for home/office scenarios, or on-board vehicles (cars, trains, ships, airplanes) or body area networks for healthcare and wellness

    Gbps wireless transceiver for high bandwidth interconnections in distributed cyber physical systems

    Get PDF
    In Cyber Physical Systems there is a growing use of high speed sensors like photo and video camera, radio and light detection and ranging (Radar/Lidar) sensors. Hence Cyber Physical Systems can benefit from the high communication data rate, several Gbps, that can be provided by mm-wave wireless transceivers. At such high frequency the wavelength is few mm and hence the whole transciever including the antenna can be integrated in a single chip. To this aim this paper presents the design of 60 GHz transciever architecture to ensure connection distances up to 10 m and data rate up to 4 Gbps. At 60 GHz there are more than 7 GHz of unlicensed bandwidth (available for free for development of new services). By using a CMOS SOI technology RF, analog and digital baseband circuitry can be integrated in the same chip minimizing noise coupling. Even the antenna is integrated on chip reducing cost and size vs. classic off-chip antenna solutions. Therefore the proposed transciever can enable at physical layer the implementation of low cost nodes for a Cyber Physical System with data rates of several Gbps and with a communication distance suitable for home/office scenarios, or on-board vehicles such as cars, trains, ships, airplanes

    Design Exploration of mm-Wave Integrated Transceivers for Short-Range Mobile Communications Towards 5G

    Get PDF
    This paper presents a design exploration, at both system and circuit levels, of integrated transceivers for the upcoming fifth generation (5G) of wireless communications. First, a system level model for 5G communications is carried out to derive transceiver design specifications. Being 5G still in pre-standardization phase, a few currently used standards (ECMA-387, IEEE 802.15.3c, and LTE-A) are taken into account as the reference for the signal format. Following a top-down flow, this work presents the design in 65nm CMOS SOI and bulk technologies of the key blocks of a fully integrated transceiver: low noise amplifier (LNA), power amplifier (PA) and on-chip antenna. Different circuit topologies are presented and compared allowing for different trade-offs between gain, power consumption, noise figure, output power, linearity, integration cost and link performance. The best configuration of antenna and LNA co-design results in a peak gain higher than 27dB, a noise figure below 5dB and a power consumption of 35mW. A linear PA design is presented to face the high Peak to Average Power Ratio (PAPR) of multi-carrier transmissions envisaged for 5G, featuring a 1dB compression point output power (OP1dB) of 8.2dBm. The delivered output power in the linear region can be increased up to 13.2dBm by combining four basic PA blocks through a Wilkinson power combiner/divider circuit. The proposed circuits are shown to enable future 5G connections, operating in a mm-wave spectrum range (spanning 9GHz, from 57GHz to 66GHz), with a data-rate of several Gb/s in a short-range scenario, spanning from few centimeters to tens of meters

    15 Gbps Wireless Link Using W-band Resonant Tunnelling Diode Transmitter

    Get PDF
    A 15 Gbps wireless link over 50 cm distance is reported in this paper. A high power and low phase noise resonant tunneling diode (RTD) oscillator is employed as the transmitter. The fundamental carrier frequency is 84 GHz and the maximum output power is 2 mW without any power amplifier. The measured phase noise value was -79 dBc/Hz at 100 KHz and -96 dBc/Hz at 1 MHz offset. The modulation scheme used was amplitude shift keying (ASK). The 15 Gbps data link showed a correctable bit error rate (BER) of 4.1×10-3, while lower data rates of 10 Gbps and 5 Gbps had BER of 3.6×10-4 and 1.0×10-6, respectively

    Compact and Efficient Millimetre-Wave Circuits for Wideband Applications

    Get PDF
    Radio systems, along with the ever increasing processing power provided by computer technology, have altered many aspects of our society over the last century. Various gadgets and integrated electronics are found everywhere nowadays; many of these were science-fiction only a few decades ago. Most apparent is perhaps your ``smart phone'', possibly kept within arm's reach wherever you go, that provides various services, news updates, and social networking via wireless communications systems. The frameworks of the fifth generation wireless system is currently being developed worldwide. Inclusion of millimetre-wave technology promise high-speed piconets, wireless back-haul on pencil-beam links, and further functionality such as high-resolution radar imaging. This thesis addresses the challenge to provide signals at carrier frequencies in the millimetre-wave spectrum, and compact integrated transmitter front-ends of sub-wavelength dimensions. A radio frequency pulse generator, i.e. a ``wavelet genarator'', circuit is implemented using diodes and transistors in III--V compound semiconductor technology. This simple but energy-efficient front-end circuit can be controlled on the time-scale of picoseconds. Transmission of wireless data is thereby achieved at high symbol-rates and low power consumption per bit. A compact antenna is integrated with the transmitter circuit, without any intermediate transmission line. The result is a physically small, single-chip, transmitter front-end that can output high equivalent isotropically radiated power. This element radiation characteristic is wide-beam and suitable for array implementations

    15 Gb/s 50-cm wireless link using a high power compact III-V 84 GHz transmitter

    Get PDF
    This paper reports on a 15-Gb/s wireless link that employs a high-power resonant tunneling diode (RTD) oscillator as a transmitter (Tx). The fundamental carrier frequency is 84 GHz and the maximum output power is 2 mW without any power amplifier. The reported performance is over a 50-cm link, with simple amplitude shift keying modulation utilized. The 15-Gb/s data link shows correctable bit error rate (BER) of 4.1 x 10⁻³, while the lower data rates of 10 and 5 Gb/s show a BER of 3.6 x 10⁻⁴ and 1.0 x 10⁻⁶, respectively. These results demonstrate that the RTD Tx is a promising candidate for the next-generation low-cost, compact, ultrahigh data rates wireless communication systems

    A 1.2 V and 69 mW 60 GHz Multi-channel Tunable CMOS Receiver Design

    Get PDF
    A multi-channel receiver operating between 56 GHz and 70 GHz for coverage of different 60 GHz bands worldwide is implemented with a 90 nm Complementary Metal-Oxide Semiconductor (CMOS) process. The receiver containing an LNA, a frequency down-conversion mixer and a variable gain amplifier incorporating a band-pass filter is designed and implemented. This integrated receiver is tested at four channels of centre frequencies 58.3 GHz, 60.5 GHz, 62.6 GHz and 64.8 GHz, employing a frequency plan of an 8 GHz-intermediate frequency (IF). The achieved conversion gain by coarse gain control is between 4.8 dB–54.9 dB. The millimeter-wave receiver circuit is biased with a 1.2V supply voltage. The measured power consumption is 69 mW

    Millimeter-Scale and Energy-Efficient RF Wireless System

    Full text link
    This dissertation focuses on energy-efficient RF wireless system with millimeter-scale dimension, expanding the potential use cases of millimeter-scale computing devices. It is challenging to develop RF wireless system in such constrained space. First, millimeter-sized antennae are electrically-small, resulting in low antenna efficiency. Second, their energy source is very limited due to the small battery and/or energy harvester. Third, it is required to eliminate most or all off-chip devices to further reduce system dimension. In this dissertation, these challenges are explored and analyzed, and new methods are proposed to solve them. Three prototype RF systems were implemented for demonstration and verification. The first prototype is a 10 cubic-mm inductive-coupled radio system that can be implanted through a syringe, aimed at healthcare applications with constrained space. The second prototype is a 3x3x3 mm far-field 915MHz radio system with 20-meter NLOS range in indoor environment. The third prototype is a low-power BLE transmitter using 3.5x3.5 mm planar loop antenna, enabling millimeter-scale sensors to connect with ubiquitous IoT BLE-compliant devices. The work presented in this dissertation improves use cases of millimeter-scale computers by presenting new methods for improving energy efficiency of wireless radio system with extremely small dimensions. The impact is significant in the age of IoT when everything will be connected in daily life.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/147686/1/yaoshi_1.pd

    Ultra-Wideband RF Transceive

    Get PDF
    corecore