35 research outputs found

    Récepteur Sans-Fil à Basse Consommation et à Modulation Mixte FSK-ASK pour les Dispositifs Médicaux

    Get PDF
    RÉSUMÉ Les émetteurs-récepteurs radiofréquences (RF) offrent le lien de communications le plus commun afin de mettre au point des dispositifs médicaux implantables dédiés aux interfaces homme-machines. La surveillance en continu des paramètres biologiques des patients nécessite un module de communication sans-fil capable de garantir un échange de données rapide, en temps réel, à faible puissance tout en étant implémenté dans un espace physique réduit. La consommation de puissance des dispositifs implantables joue un rôle important dans les durées de vie des batteries qui nécessitent une chirurgie pour leur remplacement, à moins qu’une technique de transfert de puissance sans-fil soit utilisée pour recharger la batterie ou alimenter l’implant a travers les tissus humains. Dans ce projet, nous avons conçu, implémenté et testé un récepteur RF à faible puissance et haut-débit de données opérant entre 902 et 928 MHz qui est la bande industrielle-scientifiquemédicale (Industrial, Scientific and Medical) d’Amérique du Nord. Ce récepteur fait partie d’un système de communication bidirectionnel dédié à l’interface sans-fil des dispositifs électroniques implantables et bénéficie d’une nouvelle technique de conversion de modulation par déplacement de fréquence (FSK) en Modulation par déplacement d’amplitude (ASK). Toutes les phases de conception et d’implémentation de la topologie adoptée pour les récepteurs RF sont survolées et discutées dans cette thèse. Les différents étages de circuits sont conçus selon une étude analytique fondée de la modulation FSK et ASK utilisées, ce qui permettra une amélioration des performances notamment le débit de transmission des données et la consommation de puissance. Tous les circuits sont réalisés de façon à ce que la consommation totale et la surface de silicium à réserver soient le minimum possible. Un oscillateur avec verrouillage par injection (Injection-Looked Oscillator - ILO) de faible puissance est réalisé pour assurer la conversion des signaux ASK en FSK. Une combinaison des avantages des deux architectures de modulation d’amplitude et de fréquence, pour les circuits d’émetteurrécepteur sans fil, a été réalisé avec le système proposé. Un module incluant un récepteur de réveil (Wake up) est ajouté afin d’optimiser la consommation totale du circuit en mettant tous les blocs à l’arrêt. Nous avons réalisé un récepteur de réveil RF compact et à faible coût, permettant de très faible niveaux de consommation d’énergie, une bonne sensibilité et une meilleure tolérance aux interférences. Le design est basé sur une topologie homodyne à détection d’enveloppe permettant une transposition directe du signal RF modulé en amplitude en un signal en bande de base. Cette architecture nécessite une architecture peu encombrante à intégrer qui élimine le problème des fréquences image pour la même topologie avec une modulation de fréquence.---------- ABSTRACT ISM band transceiver using a wake-up bloc for wireless body area networks (WBANs) wearable and implantable medical devices is proposed. The system achieves exceptionally low-power consumption and allows a high-data rate by combining the advantages of Frequency-Shift-Keying (FSK) and Amplitude-Shift- Keying (ASK) modulation techniques. The transceiver employs FSK modulation at a data rate of 8 Mbit/s to establish RF link among the medical device and a control unit. Transmitter (Tx) includes a new efficient FSK modulation scheme which offer up to 20 Mb/s of data-rate and dissipates around 0.084 nJ/b. The design of the proposed oscillator achieves variable frequency from 300 kHz to 8 MHz by adjusting the transistors geometry, the on-chip control signal and the tuning capacitors. In the transmitter path, the high-quality LOs Inand Quadrature-phase (I and Q) outputs are produced using a very low-power fully integrated integer-N frequency synthesizer. The architecture of the receiver is inspired from the super-regenerative receiver (SRR) topology which can be used to design a transceiver that is suitable for ASK modulation. In fact, this architecture is based mainly on envelope detection scheme which remove the need to process the carrier phase to reduce the complexity of integrated design. It has been shown too, that the envelope detection scheme is more robust to phase noise than the coherent scheme. The integrated receiver uses on a new FSK-to-ASK conversion technique. The conversion feature that we adopt in the main receiver design is based on the fact that the incident frequency of converter could be differentiated by the amplitude of output signal, which conducts to the frequency-to-amplitude conversion. Thanks to the injection locking oscillator (ILO). the new design of converter is located between the LNA as first part and the envelope detector as second part to benefit from the injection-locking isolation. On-Off-keying (OOK) fully passive wake-up circuit (WuRx) with energy harvesting from Radio Frequency (RF) link is used to optimize the power issipation of the RF transceiver in order to meet the low power requirement. The WuRx operates at the ISM 902–928 MHz. A high efficiency differential rectifier behaves as voltage multiplier. It generates the envelope of the input signal and provides the supply voltage for the rest of blocks including a low-power comparator and reference generators

    A Sub-nW 2.4 GHz Transmitter for Low Data-Rate Sensing Applications

    Get PDF
    This paper presents the design of a narrowband transmitter and antenna system that achieves an average power consumption of 78 pW when operating at a duty-cycled data rate of 1 bps. Fabricated in a 0.18 μm CMOS process, the transmitter employs a direct-RF power oscillator topology where a loop antenna acts as a both a radiative and resonant element. The low-complexity single-stage architecture, in combination with aggressive power gating techniques and sizing optimizations, limited the standby power of the transmitter to only 39.7 pW at 0.8 V. Supporting both OOK and FSK modulations at 2.4 GHz, the transmitter consumed as low as 38 pJ/bit at an active-mode data rate of 5 Mbps. The loop antenna and integrated diodes were also used as part of a wireless power transfer receiver in order to kick-start the system power supply prior to energy harvesting operation.Semiconductor Research Corporation. Interconnect Focus CenterSemiconductor Research Corporation. C2S2 Focus CenterNational Institutes of Health (U.S.) (Grant K08 DC010419)National Institutes of Health (U.S.) (Grant T32 DC00038)Bertarelli Foundatio

    A Multi-Mode ULP Receiver Based on an Injection-Locked Oscillator for IoT Applications

    Get PDF
    This paper presents an ultra-low-power receiver based on the injection-locked oscillator (ILO), which is compatible with multiple modulation schemes such as on-off keying (OOK), binary frequency-shift keying (BFSK), and differential binary phase-shift keying (DBPSK). The receiver has been fabricated in 0.18-μm CMOS technology and operates in the ISM band of 2.4 GHz. A simple envelope detection can be used even for the demodulation of BFSK and DBPSK signals due to the conversion capability of the ILO from the frequency and phase to the amplitude. In the proposed receiver, a Q-enhanced single-ended-to-differential amplifier is employed to provide high-gain amplification as well as narrow band-pass filtering, which improves the sensitivity and selectivity of the receiver. In addition, a gain-control loop is formed in the receiver to maintain constant lock range and hence frequency-to-amplitude conversion ratio for the varying power of the BFSK-modulated receiver input signal. The receiver achieves the sensitivity of -87, -85, and -82 dBm for the OOK, BFSK, and DBPSK signals respectively at the data rate of 50 kb/s and the BER lower than 0.1% while consuming the power of 324 μW in total.1

    Low-Power High-Data-Rate Transmitter Design for Biomedical Application

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Low-Power High Data-Rate Wireless Transmitter For Medical Implantable Devices

    Get PDF
    RÉSUMÉ Les émetteurs-récepteurs radiofréquences (RF) sont les circuits de communication les plus communs pour établir des interfaces home-machine dédiées aux dispositifs médicaux implantables. Par exemple, la surveillance continue de paramètres de santé des patients souffrant d'épilepsie nécessite un étage de communication sans-fil capable de garantir un transfert de données rapide, en temps réel, à faible puissance tout en étant implémenté dans un faible volume. La consommation de puissance des dispositifs implantables implique une durée de vie limitée de la batterie qui nécessite alors une chirurgie pour son remplacement, a moins qu’une technique de transfert de puissance sans-fil soit utilisée pour recharger la batterie ou alimenter l’implant a travers les tissus humains. Dans ce projet, nous avons conçu, implémenté et testé un émetteur RF à faible puissance et haut-débit de données opérant à 902-928 MHz de la bande fréquentielle industrielle-scientifique-médicale (ISM) d’Amérique du Nord. Cet émetteur fait partie d'un système de communication bidirectionnel dédié à l’interface sans-fil des dispositifs électroniques implantables et mettables et bénéficie d’une nouvelle approche de modulation par déplacement de fréquence (FSK). Les différentes étapes de conception et d’implémentation de l'architecture proposée pour l'émetteur sont discutées et analysées dans cette thèse. Les blocs de circuits sont réalisés suivant les équations dérivées de la modulation FSK proposée et qui mènera à l'amélioration du débit de données et de la consommation d'énergie. Chaque bloc est implémenté de manière à ce que la consommation d'énergie et la surface de silicium nécessaires soient réduites. L’étage de modulation et le circuit mélangeur ne nécessitent aucun courant continu grâce à leur structure passive.Parmi les circuits originaux, un oscillateur en quadrature contrôlé-en-tension (QVCO) de faible puissance est réalisé pour générer des signaux différentiels en quadrature, rail-à-rail avec deux gammes de fréquences principales de 0.3 à 11.5 MHz et de 3 à 40 MHz. L'étage de sortie énergivore est également amélioré et optimisé pour atteindre une efficacité de puissance de ~ 37%. L'émetteur proposé a été implémenté et fabriqué à la suite de simulations post-layout approfondies.----------ABSTRACT Wireless radio frequency (RF) transceivers are the most common communication front-ends used to realize the human-machine interfaces of medical devices. Continuous monitoring of body behaviour of patients suffering from Epilepsy, for example, requires a wireless communication front-end capable of maintaining a fast, real-time and low-power data communication while implemented in small size. Power budget limitation of the implantable and wearable medical devices obliges engineers to replace or recharge the battery cell through frequent medial surgeries or other power transfer techniques. In this project, a low-power and high data-rate RF transmitter (Tx) operating at North-American Industrial-Scientific-Medical (ISM) frequency band (902-928 MHz) is designed, implemented and tested. This transmitter is a part of a bi-directional transceiver dedicated to the wireless interface of implantable and wearable medical devices and benefits from a new efficient Frequency-Shift Keying (FSK) modulation scheme. Different design and implementation stages of the proposed transmitter architecture are discussed and analyzed in this thesis. The building blocks are realized according to the equations derived from the proposed FSK modulation, which results in improvement in data-rate and power consumption. Each block is implemented such that the power consumption and needed chip area are lowered while the modulation block and the mixer circuit require no DC current due to their passive structure. Among the original blocks, a low-power quadrature voltage-controlled oscillator (QVCO) is achieved to provide differential quadrature rail-to-rail signals with two main frequency ranges of 0.3-11.5 MHz and 3-40 MHz. The power-hungry output stage is also improved and optimized to achieve power efficiency of ~37%. The proposed transmitter was implemented and fabricated following deep characterisation by post-layout simulation. Both simulation and measurement results are discussed and compared with state-of-the-art transmitters showing the contribution of this work in this very popular research field. The Figure-Of-Merit (FOM) was improved, meaning mainly increasing the data-rate and lowering the power consumption of the circuit. The transmitter is implemented using 130 nm CMOS technology with 1.2 V supply voltage. A data-rate of 8 Mb/s was measured while consuming 1.4 mA and resulting in energy consumption of 0.21 nJ/b. The fabricated transmitter has small active silicon area of less than 0.25 mm2

    Ultra-Wideband Transceiver with Error Correction for Cortical Interfaces in NanometerCMOS Process

    Get PDF
    This dissertation reports a high-speed wideband wireless transmission solution for the tight power constraints of cortical interface application. The proposed system deploysImpulse Radio Ultra-wideband (IR-UWB) technique to achieve very high-rate communication. However, impulse radio signals suffer from significant attenuation within the body,and power limitations force the use of very low-power receiver circuits which introduce additional noise and jitter. Moreover, the coils’ self-resonance has to be suppressed to minimize the pulse distortion and inter-symbol interference, adding significant attenuation. To compensate these losses, an Error correction code (ECC) layer is added for functioning reliably to the system. The performance evaluation is made by modeling a pair of physically fabricated coils, and the results show that the ECC is essential to obtain the system’s reliability. Furthermore, the gm/ID methodology, which is based on the complete exploration ofall inversion regions that the transistors are biased, is studied and explored for optimizingthe system at the circuit-level. Specific focuses are on the RF blocks: the low noise am-plifier (LNA) and the injection-locked voltage controlled oscillator (IL-VCO). Through the analytical deduction of the circuit’s features as the function of the gm/ID for each transistor, it is possible to select the optimum operating region for the circuit to achieve the target specification. Other circuit blocks, including the phase shifter, frequency divider,mixer, etc. are also described and analyzed. The prototype is fabricated in a 65-nm CMOS(Complementary Metal-Oxide-Semiconductor) process

    Bidirectional Wireless Telemetry for High Channel Count Optogenetic Microsystems

    Full text link
    In the past few decades, there has been a significant progress in the development of wireless data transmission systems, from high data rate to ultra-low power applications, and from G-b per second to RFID systems. One specific area, in particular, is in wireless data transmission for implantable bio-medical applications. To understand how brain functions, neural scientists are in pursuit of high-channel count, high-density recordings for freely moving animals; yet wire tethering issue has put the mission on pause. Wireless data transmission can address this tethering problem, but there are still many challenges to be conquered. In this work, an ultra-low power ultra-wide band (UWB) transmitter with feedforward pulse generation scheme is proposed to resolve the long-existing problem in UWB transmitter. It provides a high-data rate capability to enable 1000 channels in broadband neural recording, assuming 10-bit resolution with a sampling rate of 20 kHz to accommodate both action potential (AP) and local field potential (LFP) recording, while remaining in ultra- low power consumption at 4.32 pJ/b. For the bi-directional communication between the wireless and recording/ stimulating module, a bit-wise time-division (B-TDD) duplex transceiver without cancellation scheme is presented. The receiver works at U-NII band (5.2GHz) and shares the same antenna with UWB transmitter. This significantly reduces the area consumption as well as power consumption for implantable systems. The system can support uplink at 200 Mbps for 1000 recording channels and downlink at 10 Mbps for 36 stimulation channels. With a 3.7 Volt 25mAh rechargeable battery, the system should be able to operate more than 1.5 hours straight for both recording and stimulation, assuming 1 LED channel with 100 µA, 10% duty-cycled stimulating current. The B-TDD transceiver is integrated with a dedicated recording/ stimulation optogenetic IC chip to demonstrate as a complete wireless system for implantable broadband optogenetic neural modulation and recording. The fully integrated system is less than 5 gram, which is suitable for rodent experiments.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/155242/1/yujulin_1.pd
    corecore