1,256 research outputs found

    Efficient Implementation on Low-Cost SoC-FPGAs of TLSv1.2 Protocol with ECC_AES Support for Secure IoT Coordinators

    Get PDF
    Security management for IoT applications is a critical research field, especially when taking into account the performance variation over the very different IoT devices. In this paper, we present high-performance client/server coordinators on low-cost SoC-FPGA devices for secure IoT data collection. Security is ensured by using the Transport Layer Security (TLS) protocol based on the TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 cipher suite. The hardware architecture of the proposed coordinators is based on SW/HW co-design, implementing within the hardware accelerator core Elliptic Curve Scalar Multiplication (ECSM), which is the core operation of Elliptic Curve Cryptosystems (ECC). Meanwhile, the control of the overall TLS scheme is performed in software by an ARM Cortex-A9 microprocessor. In fact, the implementation of the ECC accelerator core around an ARM microprocessor allows not only the improvement of ECSM execution but also the performance enhancement of the overall cryptosystem. The integration of the ARM processor enables to exploit the possibility of embedded Linux features for high system flexibility. As a result, the proposed ECC accelerator requires limited area, with only 3395 LUTs on the Zynq device used to perform high-speed, 233-bit ECSMs in 413 µs, with a 50 MHz clock. Moreover, the generation of a 384-bit TLS handshake secret key between client and server coordinators requires 67.5 ms on a low cost Zynq 7Z007S device

    A Touch of Evil: High-Assurance Cryptographic Hardware from Untrusted Components

    Get PDF
    The semiconductor industry is fully globalized and integrated circuits (ICs) are commonly defined, designed and fabricated in different premises across the world. This reduces production costs, but also exposes ICs to supply chain attacks, where insiders introduce malicious circuitry into the final products. Additionally, despite extensive post-fabrication testing, it is not uncommon for ICs with subtle fabrication errors to make it into production systems. While many systems may be able to tolerate a few byzantine components, this is not the case for cryptographic hardware, storing and computing on confidential data. For this reason, many error and backdoor detection techniques have been proposed over the years. So far all attempts have been either quickly circumvented, or come with unrealistically high manufacturing costs and complexity. This paper proposes Myst, a practical high-assurance architecture, that uses commercial off-the-shelf (COTS) hardware, and provides strong security guarantees, even in the presence of multiple malicious or faulty components. The key idea is to combine protective-redundancy with modern threshold cryptographic techniques to build a system tolerant to hardware trojans and errors. To evaluate our design, we build a Hardware Security Module that provides the highest level of assurance possible with COTS components. Specifically, we employ more than a hundred COTS secure crypto-coprocessors, verified to FIPS140-2 Level 4 tamper-resistance standards, and use them to realize high-confidentiality random number generation, key derivation, public key decryption and signing. Our experiments show a reasonable computational overhead (less than 1% for both Decryption and Signing) and an exponential increase in backdoor-tolerance as more ICs are added

    Reconfigurable elliptic curve cryptography

    Get PDF
    Elliptic Curve Cryptosystems (ECC) have been proposed as an alternative to other established public key cryptosystems such as RSA (Rivest Shamir Adleman). ECC provide more security per bit than other known public key schemes based on the discrete logarithm problem. Smaller key sizes result in faster computations, lower power consumption and memory and bandwidth savings, thus making ECC a fast, flexible and cost-effective solution for providing security in constrained environments. Implementing ECC on reconfigurable platform combines the speed, security and concurrency of hardware along with the flexibility of the software approach. This work proposes a generic architecture for elliptic curve cryptosystem on a Field Programmable Gate Array (FPGA) that performs an elliptic curve scalar multiplication in 1.16milliseconds for GF (2163), which is considerably faster than most other documented implementations. One of the benefits of the proposed processor architecture is that it is easily reprogrammable to use different algorithms and is adaptable to any field order. Also through reconfiguration the arithmetic unit can be optimized for different area/speed requirements. The mathematics involved uses binary extension field of the form GF (2n) as the underlying field and polynomial basis for the representation of the elements in the field. A significant gain in performance is obtained by using projective coordinates for the points on the curve during the computation process

    Cryptographic key distribution in wireless sensor networks: a hardware perspective

    Get PDF
    In this work the suitability of different methods of symmetric key distribution for application in wireless sensor networks are discussed. Each method is considered in terms of its security implications for the network. It is concluded that an asymmetric scheme is the optimum choice for key distribution. In particular, Identity-Based Cryptography (IBC) is proposed as the most suitable of the various asymmetric approaches. A protocol for key distribution using identity based Non-Interactive Key Distribution Scheme (NIKDS) and Identity-Based Signature (IBS) scheme is presented. The protocol is analysed on the ARM920T processor and measurements were taken for the run time and energy of its components parts. It was found that the Tate pairing component of the NIKDS consumes significants amounts of energy, and so it should be ported to hardware. An accelerator was implemented in 65nm Complementary Metal Oxide Silicon (CMOS) technology and area, timing and energy figures have been obtained for the design. Initial results indicate that a hardware implementation of IBC would meet the strict energy constraint of a wireless sensor network node

    Improved throughput of Elliptic Curve Digital Signature Algorithm (ECDSA) processor implementation over Koblitz curve k-163 on Field Programmable Gate Array (FPGA)

    Get PDF
    يقـدم البحث دراسة عن تصميم وتنفيذ دائرة الكترونية لتوليد التوقيع الالكتروني والتاكد من صحته ,بالاعتماد على مواصفات المنحني الاهليجي الموصى بها من  قبل المعهد الوطني للمعايير والتكنولوجيا(NIST) .حيث أرتكز العمل على إختيار منحني كوبلتز وتطبيقه على الحقول المنتهية أو ما تسمى بحقول غالو(2163)GF، ونظراً لأهمية تحسين الأداء في المعالجات الحديثة المبنية في بيئة البوابات المنطقية القابلة للبرمجة (FPGA)،  فقد أظهرت نتائج المحاكاة والتنفيذ للتصميم المقترح على الجهاز نوع Virtex5-xc5vlx155t-3ff1738  زيادة في معدل البيانات التي يتم معالجتها اثناء عمليتي توليد التوقيع واثبات صحته الى 0.08187 Mbit/s وبنسبة تصل الى 6.95% ,بالمقارنة مع التصميمات السابقة ، كما أستغرقت مدة تنفيذ العمليتين 1.66 ملي ثانية وبتردد أقصاه 83.477 ميكاهرتز. تم الاخذ بنظرالاعتبار تصميم المنفذ التسلسلي غير المتزامن (UART) والمستخدم في عملية نقل البيانات بين الحاسبة وFPGA .            The widespread use of the Internet of things (IoT) in different aspects of an individual’s life like banking, wireless intelligent devices and smartphones has led to new security and performance challenges under restricted resources. The Elliptic Curve Digital Signature Algorithm (ECDSA) is the most suitable choice for the environments due to the smaller size of the encryption key and changeable security related parameters. However, major performance metrics such as area, power, latency and throughput are still customisable and based on the design requirements of the device. The present paper puts forward an enhancement for the throughput performance metric by proposing a more efficient design for the hardware implementation of ECDSA. The design raised the throughput to 0.08207 Mbit/s, leading to an increase of 6.95% from the existing design. It also includes the design and implementation of the Universal Asynchronous Receiver Transmitter (UART) module. The present work is based on a 163-bit key-size over Koblitz curve k-163 and secure hash function SHA-1. A serial module for the underlying modular layer, high-speed architecture of Koblitz point addition and Koblitz point multiplication have been considered in this work, in addition to utilising the carry-save-multiplier, modular adder-subtractor and Extended Euclidean module for ECDSA protocols. All modules are designed using VHDL and implemented on the platform Virtex5 xc5vlx155t-3ff1738. Signature generation requires 0.55360ms, while its validation consumes 1.10947288ms. Thus, the total time required to complete both processes is equal to 1.66ms and the maximum frequency is approximately 83.477MHZ, consuming a power of 99mW with the efficiency approaching 3.39 * 10-6

    Security analysis of hardware crypto wallets

    Get PDF
    Tato práce analyzuje bezpečnost moderních hardwarových krypto peněženek. Různé modely ohrožení a hrozby jsou zhodnoceny. Několik současných hardwarových peněženek je podrobeno recenzi. Potenciální uživatelé jsou poučeni o tom, jak vybrat správnou hardwarovou peněženku a na nekalé praktiky některých výrobců. Původní hardwarová peněženka, Trezor One, je podrobena detailní analýze jak z hardwarové, tak softwarové perspektivy a tvrzení výrobce jsou ověřena. Zvláštní důraz je kladen na útoky postranním kanálem a experimenty s Trezor One.The thesis analyzes the security of modern hardware crypto wallets. Different threat models and threats for users are assessed with some of the current hardware wallets reviewed. Potential users are educated how to choose the right hardware wallet and warned about misleading advertising of some vendors. The original hardware wallet, Trezor One, is thoroughly analyzed from both hardware and software perspective and the security claims of the vendor are verified. A particular emphasis is placed on side-channel attacks and experiments with Trezor One
    corecore