118 research outputs found

    WIMAX 802.16 PHYSICAL LAYER IMPLEMENTATION AND WIMAX COVERAGE AND PLANNING.

    Get PDF
    Over the last decade, the impact of wireless communication on the way we live and carry out business has been surpassed only by impact of the internet. But wireless communications is still in its infancy and the next stage of its development will be supplementing or replacing network infrastructure that was traditionally wired. The advent and adoption of the computer and the myriad software packages available for it offered the ability to generate a new wave of communication combining art, pictures, music and words into a targeted multimedia presentation. These presentations are large so that is requires higher bandwidth transmission facilities. Coupling this with the need for mobility, the solution would be wireless data delivery putting in consideration the bandwidth request. WiMAX technology is based on the IEEE 802.16 standard, it was only recently when the first IEEE 802.16 based equipment broadband began to enter the market. The additional spectrum, bandwidth and throughout capabilities of 802.16 will remarkably improve wireless data delivery and should allows even more wireless data service areas to be deployed economically. In this Final Year Project, a study about the IEEE 802.16 standard and mainly concentrate on the 802.16 PHY Layer behaviors was performed. A Simulink based model for the 802.16 PHY Layer was built for simulation and performance evaluation of WiMAX. MATLA

    Advanced index modulation techniques for future wireless networks

    Get PDF
    In the research study proposed in this Ph.D Thesis, we consider Index Modulation as a novel tool to enhance energy and spectral efficiencies for upcoming 5G networks, including wireless sensor networks and internet of things. In this vein, spatial modulation was proposed to enhance the capacity of wireless systems to partially achieve the capacity of MIMO systems but at lower cost, making it a technique that has attracted significant attention over the past few years. As such, SM schemes have been regarded as possible candidates for spectrum- and energy-efficient next generation MIMO systems. However, the implementation of the SM is also challenging because of its heavy dependence on channel characteristics, channel correlation, corrupted CSI and the need to have adequate spacing between antennas. Moreover, the SM requires multiple antennas at the transmitter which adds cost to the hardware implementation. In addition, the number of mapped bits in SM is limited by the physical size of the wireless device where only small number of antennas can be used. The switching time wasted by RF antenna switches adds to the complexity of the issue. In this Thesis, we study the drawbacks of SM in the articles indicated, namely Performance Comparison of Spatial Modulation Detectors Under Channel Impairments that is placed in the Appendix at the end of Thesis as it is a conference paper, and The Impact of Antenna Switching Time on Spatial Modulation that is put in Chapter 1. In the first article, we have shown that channel impairments have serious impacts on the BER performance and on the capacity of the SM system and that the SM is too sensitive to both imperfect and correlated channels. In the second article, we have demonstrated that the switching time defined as the time needed by the system to turn off an antenna and turn on another one, which is an inherent property of RF industrial switches used in SM systems, is in the order of nanoseconds and naturally influences the transmission rate of SM systems because of introducing systematic transmission gaps or pauses. Given the speed limitation of practical RF switches in performing transitions, antenna transition-based technologies like SM schemes are capped in terms of data rate performance. In fact, the effective data rate of SM will remain hostage to developments in industrial RF switches. This brings restrictions to the implementation and operation issues when extremely high data rates become a necessity. It is shown by the assemblage of our results that the switching time Tsw which is a requirement for transitions between antennas to happen, dictates restrictions on data rate, capacity and spectral efficiency of SM systems. Furthermore, we propose baseband non-hardware-based indexing modulation schemes based on frequency-index modulation, coherent chaotic modulation and non-coherent differential chaotic modulation schemes as potential alternatives to SM, that would also fit wireless sensor networks and internet of things applications. In this regard, we have proposed three articles. The first article which represents frequency index modulation is called Frequency Index Modulation for Low Complexity Low Energy Communication Networks and is placed in Chapter 2 of this Thesis. In this article, we explore a low complexity multi-user communication system based on frequency index modulation that suits Internet of Things (IoT) applications and we show that such a system would constitute an excellent candidate for wireless sensor applications, where it represents a simpler substitution for frequency-hopping (FH) based architectures, in which the hops carry extra bits. The third article which concerns coherent chaotic modulation is called Design of an Initial-Condition Index Chaos Shift Keying Modulation and is located in Chapter 3. In this article, an initial condition index chaos shift keying modulation is proposed. This design aims to increase the spectral and energy efficiencies to unprecedented levels. The proposed scheme exploits the initial conditions to generate different chaotic sequences to convey extra bits per transmission. In comparison to rival modulation schemes, the results obtained in the proposed work show a promising data rate boost and a competitive performance. The last article employs a non-coherent differential chaotic shift-key system named Permutation Index DCSK Modulation Technique for Secure Multi-User High-Data-Rate Communication Systems that is found in the Appendix. In this original design, where each data frame is divided into two time slots in which the reference chaotic signal is sent in the first time slot and a permuted replica of the reference signal multiplied by the modulating bit is sent in the second time slot, we target enhancing data security, energy and spectral efficiencies. Overall, in light of the high demands for bandwidth and energy efficiencies of futuristic systems, the suggested soft indexing mechanisms are successful candidates with promising results

    Development of a dc-ac power conditioner for wind generator by using neural network

    Get PDF
    This project present of development single phase DC-AC converter for wind generator application. The mathematical model of the wind generator and Artificial Neural Network control for DC-AC converter is derived. The controller is designed to stabilize the output voltage of DC-AC converter. To verify the effectiveness of the proposal controller, both simulation and experimental are developed. The simulation and experimental result show that the amplitude of output voltage of the DC-AC converter can be controlled

    Reliability of Trigonometric Transform-based Multi-Carrier Scheme

    Get PDF
    This work is looking for a new physical layer of a multi-carrier wireless communication system to be implemented in low complexity way, resorting to suitable fast transform. The work presents and assesses a scheme based on Discrete Trigonometric Transform with appending symmetric redundancy either in each or multiple consecutive transformed blocks. A receiver front-end filter is proposed to enforce whole symmetry in the channel impulse response, and bank of one tap filter per sub-carrier is applied as an equalizer in the transform domain. The behaviour of the transceiver is studied in the context of practical impairments like fading channel, carrier frequency offset and narrow band interference. Moreover, the performance is evaluated in contrast with the state of art methods by means of computer simulations, and it has been found that the new scheme improves robustness and reliability of communication signal, and record lower peak to average power ratio. The study demonstrates that front-end matched filter effectively performs frequency synchronization to compensate the carrier frequency offset in the received signal

    Novel DWT-DAPSK based transceivers for DVB-T transmission and next generation mobile networks

    Get PDF
    Digital wireless communication has become one of the most exciting research topics in the electronic engineering field due to the explosive demands for high-speed wireless services, such as cellular video conferencing. The second generation Terrestrial Digital Video Broadcasting (DVB- T2) has been demonstrated to provide digital communication services with very high spectral efficiency and significantly improved performance. Orthogonal Frequency Division Multiplexing (OFDM) systems have been increasingly deployed in mobile networks for their spectral efficiency and optimum bit error rate. An OFDM system is a multi-carrier system which transmits signals from a single source at different frequencies simultaneously as parallel components. A distinguishing feature of the OFDM system is its ability to preserve high bandwidth efficiency in high speed data streams. Among the different types of OFDM systems, wavelet based systems have been demonstrated to have much better bandwidth and channel performance compared to the Discrete Fourier transform (DFT) and Discrete Cosine Transform (DCT) based systems. The DFT and DCT systems suffer from several disadvantages including less bandwidth efficiency due 'to the need for guard interval and highly complex system design. Discrete Wavelet transform (DWT) based OFDM systems naturally overcome these disadvantages by their design methodology and the technique of transmitting concentrated energy over small spectral coefficients. Several types of modulation schemes such as DPSK, QAM are employed in OFDM systems, which introduce certain penalties such as increased bandwidth and complexity of the system design. So a multilevel differential modulation technique namely Differential Amplitude and Phase Shift Keying (64 DAPSK) has been proposed as an alternative solution. DAPSK-OFDM is very suitable for high date-rate digital mobile radio channel with additive white Gaussian noise (A WGN). In this research work it has been f demonstrated that a combination of DWT -OFDM with DAPSK modulation can be employed to achieve very low peak-to-average power ratio (PAPR), improved bit error ratio (BER), and much reduced inter symbol interference (ISI) & inter-carrier interference (IeI) in wireless mobile network applications. A mathematical model has been proposed for the DWT-OFDM system with DAPSK modulation scheme in this work. The system performance has been evaluated via simulation using Matlab Simulink package and also verified using Matlab programming. This proposed DWT-OFDM with 64DAPSK hybrid system is demonstrated to have better BER (by an order of magnitude for an SNR of 25dB) performance and improved P APR (by 7.2dB) and interference values. It is also demonstrated that including companding with this system results in further reduction of PAPR. Finally, the simulation results also demonstrate that DWT-DAPSK scheme can be successfully employed in DVTB-T2 systems due to its very high spectral efficiency, much improved BER and significantly reduced PAPR performance
    • …
    corecore