675 research outputs found

    An approach to rollback recovery of collaborating mobile agents

    Get PDF
    Fault-tolerance is one of the main problems that must be resolved to improve the adoption of the agents' computing paradigm. In this paper, we analyse the execution model of agent platforms and the significance of the faults affecting their constituent components on the reliable execution of agent-based applications, in order to develop a pragmatic framework for agent systems fault-tolerance. The developed framework deploys a communication-pairs independent check pointing strategy to offer a low-cost, application-transparent model for reliable agent- based computing that covers all possible faults that might invalidate reliable agent execution, migration and communication and maintains the exactly-one execution property

    CRAFT: A library for easier application-level Checkpoint/Restart and Automatic Fault Tolerance

    Get PDF
    In order to efficiently use the future generations of supercomputers, fault tolerance and power consumption are two of the prime challenges anticipated by the High Performance Computing (HPC) community. Checkpoint/Restart (CR) has been and still is the most widely used technique to deal with hard failures. Application-level CR is the most effective CR technique in terms of overhead efficiency but it takes a lot of implementation effort. This work presents the implementation of our C++ based library CRAFT (Checkpoint-Restart and Automatic Fault Tolerance), which serves two purposes. First, it provides an extendable library that significantly eases the implementation of application-level checkpointing. The most basic and frequently used checkpoint data types are already part of CRAFT and can be directly used out of the box. The library can be easily extended to add more data types. As means of overhead reduction, the library offers a build-in asynchronous checkpointing mechanism and also supports the Scalable Checkpoint/Restart (SCR) library for node level checkpointing. Second, CRAFT provides an easier interface for User-Level Failure Mitigation (ULFM) based dynamic process recovery, which significantly reduces the complexity and effort of failure detection and communication recovery mechanism. By utilizing both functionalities together, applications can write application-level checkpoints and recover dynamically from process failures with very limited programming effort. This work presents the design and use of our library in detail. The associated overheads are thoroughly analyzed using several benchmarks

    Study and Design of Global Snapshot Compilation Protocols for Rollback-Recovery in Mobile Distributed System

    Get PDF
    Checkpoint is characterized as an assigned place in a program at which ordinary process is intruded on particularly to protect the status data important to permit resumption of handling at a later time. A conveyed framework is an accumulation of free elements that participate to tackle an issue that can't be separately comprehended. A versatile figuring framework is a dispersed framework where some of procedures are running on portable hosts (MHs). The presence of versatile hubs in an appropriated framework presents new issues that need legitimate dealing with while outlining a checkpointing calculation for such frameworks. These issues are portability, detachments, limited power source, helpless against physical harm, absence of stable stockpiling and so forth. As of late, more consideration has been paid to giving checkpointing conventions to portable frameworks. Least process composed checkpointing is an alluring way to deal with present adaptation to internal failure in portable appropriated frameworks straightforwardly. This approach is without domino, requires at most two recovery_points of a procedure on stable stockpiling, and powers just a base number of procedures to recovery_point. In any case, it requires additional synchronization messages, hindering of the basic calculation or taking some futile recovery_points. In this paper, we complete the writing review of some Minimum-process Coordinated Checkpointing Algorithms for Mobile Computing System

    Transparently Mixing Undo Logs and Software Reversibility for State Recovery in Optimistic PDES

    Get PDF
    The rollback operation is a fundamental building block to support the correct execution of a speculative Time Warp-based Parallel Discrete Event Simulation. In the literature, several solutions to reduce the execution cost of this operation have been proposed, either based on the creation of a checkpoint of previous simulation state images, or on the execution of negative copies of simulation events which are able to undo the updates on the state. In this paper, we explore the practical design and implementation of a state recoverability technique which allows to restore a previous simulation state either relying on checkpointing or on the reverse execution of the state updates occurred while processing events in forward mode. Differently from other proposals, we address the issue of executing backward updates in a fully-transparent and event granularity-independent way, by relying on static software instrumentation (targeting the x86 architecture and Linux systems) to generate at runtime reverse update code blocks (not to be confused with reverse events, proper of the reverse computing approach). These are able to undo the effects of a forward execution while minimizing the cost of the undo operation. We also present experimental results related to our implementation, which is released as free software and fully integrated into the open source ROOT-Sim (ROme OpTimistic Simulator) package. The experimental data support the viability and effectiveness of our proposal

    Model and simulation of power consumption and power saving potential of energy efficient cluster hardware

    Get PDF
    In the last years the power consumption of high performance computing clusters has become a growing problem because number and size of cluster installations raised and still is raising. The high power consumption of the clusters results from the main goal of these clusters: High performance. With a low utilization the cluster hardware consumes nearly as much energy as when it is fully utilized. In these low utilization phases the cluster hardware can theoretically turned off or switched to an lower power consuming mode. In this thesis a model is designed to estimate the power consumption of the hardware with and without energy saving mechanism. With the resulting software it is possible to estimate the cluster power consumption for different configurations of a parallel program. Further energy aware hardware can be simulated to determine an upper bound for energy savings without performance leakage. The results show that is a great energy saving potential for energy aware hardware even in high performance computing. This potential should motivate research in mechanism to control the energy aware hardware in high performance clusters

    MobiStreams: A Reliable Distributed Stream Processing System for Mobile Devices

    Get PDF
    Multi-core phones are now pervasive. Yet, existing applications rely predominantly on a client-server computing paradigm, using phones only as thin clients, sending sensed information via the cellular network to servers for processing. This makes the cellular network the bottleneck, limiting overall application performance. In this paper, we propose Mobi Streams, a Distributed Stream Processing System (DSPS) that runs directly on smartphones. Mobi Streams can offload computing from remote servers to local phones and thus alleviate the pressure on the cellular network. Implementing DSPS on smartphones faces significant challenges: 1) multiple phones can readily fail simultaneously, and 2) the phones' ad-hoc WiFi network has low bandwidth. Mobi Streams tackles these challenges through two new techniques: 1) token-triggered check pointing, and 2) broadcast-based check pointing. Our evaluations driven by two real world applications deployed in the US and Singapore show that migrating from a server platform to a smartphone platform eliminates the cellular network bottleneck, leading to 0.78~42.6X throughput increase and 10%~94.8% latency decrease. Also, Mobi Streams' fault tolerance scheme increases throughput by 230% and reduces latency by 40% vs. prior state-of-the-art fault-tolerant DSPSs
    • …
    corecore