6,099 research outputs found

    A neural probe with up to 966 electrodes and up to 384 configurable channels in 0.13 μm SOI CMOS

    Get PDF
    In vivo recording of neural action-potential and local-field-potential signals requires the use of high-resolution penetrating probes. Several international initiatives to better understand the brain are driving technology efforts towards maximizing the number of recording sites while minimizing the neural probe dimensions. We designed and fabricated (0.13-μm SOI Al CMOS) a 384-channel configurable neural probe for large-scale in vivo recording of neural signals. Up to 966 selectable active electrodes were integrated along an implantable shank (70 μm wide, 10 mm long, 20 μm thick), achieving a crosstalk of −64.4 dB. The probe base (5 × 9 mm2) implements dual-band recording and a 1

    A Scalable 6-to-18 GHz Concurrent Dual-Band Quad-Beam Phased-Array Receiver in CMOS

    Get PDF
    This paper reports a 6-to-18 GHz integrated phased- array receiver implemented in 130-nm CMOS. The receiver is easily scalable to build a very large-scale phased-array system. It concurrently forms four independent beams at two different frequencies from 6 to 18 GHz. The nominal conversion gain of the receiver ranges from 16 to 24 dB over the entire band while the worst-case cross-band and cross-polarization rejections are achieved 48 dB and 63 dB, respectively. Phase shifting is performed in the LO path by a digital phase rotator with the worst-case RMS phase error and amplitude variation of 0.5° and 0.4 dB, respectively, over the entire band. A four-element phased-array receiver system is implemented based on four receiver chips. The measured array patterns agree well with the theoretical ones with a peak-to-null ratio of over 21.5 dB

    Analog/RF Circuit Design Techniques for Nanometerscale IC Technologies

    Get PDF
    CMOS evolution introduces several problems in analog design. Gate-leakage mismatch exceeds conventional matching tolerances requiring active cancellation techniques or alternative architectures. One strategy to deal with the use of lower supply voltages is to operate critical parts at higher supply voltages, by exploiting combinations of thin- and thick-oxide transistors. Alternatively, low voltage circuit techniques are successfully developed. In order to benefit from nanometer scale CMOS technology, more functionality is shifted to the digital domain, including parts of the RF circuits. At the same time, analog control for digital and digital control for analog emerges to deal with current and upcoming imperfections

    Design of CMOS UWB LNA

    Get PDF

    A New CMOS Fully Differential Low Noise Amplifier for Wideband Applications

    Get PDF
    In this paper, a multi-stage fully differential low noise amplifier (LNA) has been presented for wideband applications. A common-gate input stage is used to improve the input impedance matching and linearity. A common-source stage is also used as the second stage to enhance gain and reduce noise. A shunt-shunt feedback is employed to extend bandwidth and enhance linearity. The proposed low noise amplifier has been designed and simulated using RF-TSMC 0.18 μm CMOS process technology. In frequency band of 3.5-7.5 GHz, this amplifier has a flat power gain (S21) of 16.5 ± 1.5 dB, low noise figure (NF) of 3dB, input (S11) and output (S22) return losses less than -10 dB and high linearity with input thirdorder intercept point (IIP3) of -3dBm. It’s power consumption is also less than 10 mw with low power supply voltage of 0.8v
    corecore