129 research outputs found

    High Performance LNAs and Mixers for Direct Conversion Receivers in BiCMOS and CMOS Technologies

    Get PDF
    The trend in cellular chipset design today is to incorporate support for a larger number of frequency bands for each new chipset generation. If the chipset also supports receiver diversity two low noise amplifiers (LNAs) are required for each frequency band. This is however associated with an increase of off-chip components, i.e. matching components for the LNA inputs, as well as complex routing of the RF input signals. If balanced LNAs are implemented the routing complexity is further increased. The first presented work in this thesis is a novel multiband low noise single ended LNA and mixer architecture. The mixer has a novel feedback loop suppressing both second order distortion as well as DC-offset. The performance, verified by Monte Carlo simulations, is sufficient for a WCDMA application. The second presented work is a single ended multiband LNA with programmable integrated matching. The LNA is connected to an on-chip tunable balun generating differential RF signals for a differential mixer. The combination of the narrow band input matching and narrow band balun of the presented LNA is beneficial for suppressing third harmonic downconversion of a WLAN interferer. The single ended architecture has great advantages regarding PCB routing of the RF input signals but is on the other hand more sensitive to common mode interferers, e.g. ground, supply and substrate noise. An analysis of direct conversion receiver requirements is presented together with an overview of different LNA and mixer architectures in both BiCMOS and CMOS technology

    CMOS Power Amplifiers for Multi-Hop Communication Systems

    Get PDF

    System and Circuit Design Aspects for CMOS Wireless Handset Receivers

    Get PDF

    Visual analysis of radio frequency conformance test results

    Get PDF
    Tässä diplomityössä esitellään visuaalinen menetelmä kolmannen sukupolven matkapuhelimien yhdenmukaisuustestien tulosten analysointiin. Työssä käsitellyt testit käsittävät matkapuhelimen lähettimen ja vastaanottimen ominaisuuksien radiotaajuuksisia mittauksia. Analyysimenetelmä perustuu normalisoitujen mittaustulosten graafiseen esittämiseen. Esitys mahdollistaa laitteiden keskinäisen vertailun sekä vertaamisen testirajoihin. Työssä analyysimenetelmää sovelletaan kolmen eri laitteen testituloksiin. Analyysituloksista voidaan päätellä, että menetelmä sopii kyseisen tiedon havainnollistamiseen ja analysointiin. Analyysituloksiin perustuen valitaan suoritetuista testeistä suositus testijoukoksi käytettäväksi laitteiden vertailumittauksiin tuotekehityksessä. Kyseisten testien tulokset osoittivat eroja laitteiden välillä.This thesis presents a visual method for analysis of third generation mobile phone conformance test results. The tests included are radio frequency transmitter and receiver tests. The analysis method is based on presenting the normalised measurement results as boxplots. The method allows benchmarking of devices and comparing results against test limits. The method is applied to results of three devices, which confirms that the method is suitable for visualising this type of data. Based on the analysis results of the three devices, a test set for comparing devices in the product development is recommended. This set includes test cases that revealed differences between any of the tested devices

    THROUGHPUT OPTIMIZATION AND ENERGY EFFICIENCY OF THE DOWNLINK IN THE LTE SYSTEM

    Get PDF
    Nowadays, the usage of smart phones is very popular. More and more people access the Internet with their smart phones. This demands higher data rates from the mobile network operators. Every year the number of users and the amount of information is increasing dramatically. The wireless technology should ensure high data rates to be able to compete with the wire-based technology. The main advantage of the wireless system is the ability for user to be mobile. The 4G LTE system made it possible to gain very high peak data rates. The purpose of this thesis was to investigate the improvement of the system performance for the downlink based on different antenna configurations and different scheduling algorithms. Moreover, the fairness between the users using different schedulers has been analyzed and evaluated. Furthermore, the energy efficiency of the scheduling algorithms in the downlink of LTE systems has been considered. Some important parts of the LTE system are described in the theoretical part of this thesis.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    Performance issues in hybrid fiber radio communication systems due to nonlinear distortion effects in laser transmitters

    Get PDF
    With the increasing demand for broadband services, it is expected that hybrid fiber radio systems may be employed to provide high capacity access networks for both mobile and fixed users. In these systems, the radio frequency data signals are modulated onto an optical carrier at a mobile switching centre and then sent over fiber to a number of base stations, before being transmitted over air to the users. A possible method of generating the optical radio frequency data signals for distribution over fiber is to directly modulate the electrical signal onto an optical carrier using a laser diode. The major problem with this technique is that nonlinearities in electncal-to-optical conversion may seriously degrade the system performance. In this work we initially examined the distribution of a wideband code division multiple access signal (centered around 6 GHz) through an optically fed microwave system. Our results show that the adjacent channel leakage ratio is degraded from -52 to -32 dBc after passing through the optical system. We then examined the technique of externally injecting light into the directly modulated laser, to extend the bandwidth of the laser diode and hence, increase it’s linear region to beyond the frequency of interest With this technique an improvement of over 10 dB in the adjacent channel leakage ratio of the signal was achieved. We subsequently went on to examine the distribution of a 5-channel radio frequency signal (each channel carrying 10 Mbit/s) through a hybrid fiber system As in the previous work, we examined how external light injection into the directly modulated laser could be used to improve system performance, and our results show an improvement of up to 5 dB. Finally a model was designed using Matlab, which simulated the 5-channel system mentioned above. It used the laser rate equations to mimic the nonlinear effects of the laser diode Good correlation was observed between experimental and simulated results

    Low-noise amplifiers for integrated multi-mode direct-conversion receivers

    Get PDF
    The evolution of wireless telecommunication systems during the last decade has been rapid. During this time the design driver has shifted towards fast data applications instead of speech. In addition, the different systems may have a limited coverage, for example, limited to urban areas only. Thus, it has become important for a mobile terminal to be able to use different wireless systems, depending on the application chosen and the location of the terminal. The choice of receiver architecture affects the performance, size, and cost of the receiver. The superheterodyne receiver has hitherto been the dominant radio architecture, because of its good sensitivity and selectivity. However, superheterodyne receivers require expensive filters, which, with the existing technologies, cannot be integrated on the same chip as the receiver. Therefore, architectures using a minimum number of external components, such as direct conversion, have become popular. In addition, compared to the superheterodyne architecture, the direct-conversion architecture has benefits when multi-mode receivers, which are described in this thesis, are being designed. In this thesis, the limitations placed on the analog receiver by different system specifications are introduced. The estimations for the LNA specifications are derived from these specifications. In addition, the limitations imposed by different types of receiver architectures are described. The inductively-degenerated LNA is the basis for all the experimental circuits. The different components for this configuration are analyzed and compared to other commonly-used configurations in order to justify the use of an inductively-degenerated LNA. Furthermore, the design issues concerning the LNA-mixer interface in direct-conversion receivers are analyzed. Without knowing these limitations, it becomes difficult to understand the choices made in the experimental circuits. One of the key parts of this thesis describes the design and implementation of a single-chip multi-mode LNA, which is one of the key blocks in multi-mode receivers. The multi-mode structures in this thesis were developed for a direct-conversion receiver where only one system is activated at a time. The LNA interfaces to a pre-select filter and mixers and the different LNA components are analyzed in detail. Furthermore, the design issues related to possible interference from additional systems on single-chip receivers are analyzed and demonstrated. A typical receiver includes variable gain, which can be implemented both in the analog baseband and/or in the RF. If the variable gain is implemented in the RF parts, it is typically placed in the LNA or in a separate gain control stage. Several methods that can be used to implement a variable gain in the LNA are introduced and compared to each other. Furthermore, several of these methods are included in the experimental circuits. The last part of this thesis concentrates on four experimental circuits, which are described in this thesis. The first two chips describe an RF front-end and a direct-conversion receiver for WCDMA applications. The whole receiver demonstrates that it is possible to implement A/D converters on the same chip as sensitive RF blocks without significantly degrading receiver performance. The other two chips describe an RF front-end for WCDMA and GSM900 applications and a direct-conversion receiver for GSM900, DCS1800, PCS1900 and WCDMA systems. These ICs demonstrate the usability of the circuit structure developed and presented in this thesis. The chip area in the last multi-mode receiver is not significantly increased compared to corresponding single-system receivers.reviewe

    Receiver Front-Ends in CMOS with Ultra-Low Power Consumption

    Get PDF
    Historically, research on radio communication has focused on improving range and data rate. In the last decade, however, there has been an increasing demand for low power and low cost radios that can provide connectivity with small devices around us. They should be able to offer basic connectivity with a power consumption low enough to function extended periods of time on a single battery charge, or even energy scavenged from the surroundings. This work is focused on the design of ultra-low power receiver front-ends intended for a receiver operating in the 2.4GHz ISM band, having an active power consumption of 1mW and chip area of 1mm². Low power consumption and small size make it hard to achieve good sensitivity and tolerance to interference. This thesis starts with an introduction to the overall receiver specifications, low power radio and radio standards, front-end and LO generation architectures and building blocks, followed by the four included papers. Paper I demonstrates an inductorless front-end operating at 915MHz, including a frequency divider for quadrature LO generation. An LO generator operating at 2.4GHz is shown in Paper II, enabling a front-end operating above 2GHz. Papers III and IV contain circuits with combined front-end and LO generator operating at or above the full 2.45GHz target frequency. They use VCO and frequency divider topologies that offer efficient operation and low quadrature error. An efficient passive-mixer design with improved suppression of interference, enables an LNA-less design in Paper IV capable of operating without a SAW-filter

    Saw-Less radio receivers in CMOS

    Get PDF
    Smartphones play an essential role in our daily life. Connected to the internet, we can easily keep in touch with family and friends, even if far away, while ever more apps serve us in numerous ways. To support all of this, higher data rates are needed for ever more wireless users, leading to a very crowded radio frequency spectrum. To achieve high spectrum efficiency while reducing unwanted interference, high-quality band-pass filters are needed. Piezo-electrical Surface Acoustic Wave (SAW) filters are conventionally used for this purpose, but such filters need a dedicated design for each new band, are relatively bulky and also costly compared to integrated circuit chips. Instead, we would like to integrate the filters as part of the entire wireless transceiver with digital smartphone hardware on CMOS chips. The research described in this thesis targets this goal. It has recently been shown that N-path filters based on passive switched-RC circuits can realize high-quality band-select filters on CMOS chips, where the center frequency of the filter is widely tunable by the switching-frequency. As CMOS downscaling following Moore’s law brings us lower clock-switching power, lower switch on-resistance and more compact metal-to-metal capacitors, N-path filters look promising. This thesis targets SAW-less wireless receiver design, exploiting N-path filters. As SAW-filters are extremely linear and selective, it is very challenging to approximate this performance with CMOS N-path filters. The research in this thesis proposes and explores several techniques for extending the linearity and enhancing the selectivity of N-path switched-RC filters and mixers, and explores their application in CMOS receiver chip designs. First the state-of-the-art in N-path filters and mixer-first receivers is reviewed. The requirements on the main receiver path are examined in case SAW-filters are removed or replaced by wideband circulators. The feasibility of a SAW-less Frequency Division Duplex (FDD) radio receiver is explored, targeting extreme linearity and compression Irequirements. A bottom-plate mixing technique with switch sharing is proposed. It improves linearity by keeping both the gate-source and gate-drain voltage swing of the MOSFET-switches rather constant, while halving the switch resistance to reduce voltage swings. A new N-path switch-RC filter stage with floating capacitors and bottom-plate mixer-switches is proposed to achieve very high linearity and a second-order voltage-domain RF-bandpass filter around the LO frequency. Extra out-of-band (OOB) rejection is implemented combined with V-I conversion and zero-IF frequency down-conversion in a second cross-coupled switch-RC N-path stage. It offers a low-ohmic high-linearity current path for out-of-band interferers. A prototype chip fabricated in a 28 nm CMOS technology achieves an in-band IIP3 of +10 dBm , IIP2 of +42 dBm, out-of-band IIP3 of +44 dBm, IIP2 of +90 dBm and blocker 1-dB gain-compression point of +13 dBm for a blocker frequency offset of 80 MHz. At this offset frequency, the measured desensitization is only 0.6 dB for a 0-dBm blocker, and 3.5 dB for a 10-dBm blocker at 0.7 GHz operating frequency (i.e. 6 and 9 dB blocker noise figure). The chip consumes 38-96 mW for operating frequencies of 0.1-2 GHz and occupies an active area of 0.49 mm2. Next, targeting to cover all frequency bands up to 6 GHz and achieving a noise figure lower than 3 dB, a mixer-first receiver with enhanced selectivity and high dynamic range is proposed. Capacitive negative feedback across the baseband amplifier serves as a blocker bypassing path, while an extra capacitive positive feedback path offers further blocker rejection. This combination of feedback paths synthesizes a complex pole pair at the input of the baseband amplifier, which is up-converted to the RF port to obtain steeper RF-bandpass filter roll-off than the conventional up-converted real pole and reduced distortion. This thesis explains the circuit principle and analyzes receiver performance. A prototype chip fabricated in 45 nm Partially Depleted Silicon on Insulator (PDSOI) technology achieves high linearity (in-band IIP3 of +3 dBm, IIP2 of +56 dBm, out-of-band IIP3 = +39 dBm, IIP2 = +88 dB) combined with sub-3 dB noise figure. Desensitization due to a 0-dBm blocker is only 2.2 dB at 1.4 GHz operating frequency. IIFinally, to demonstrate the performance of the implemented blocker-tolerant receiver chip designs, a test setup with a real mobile phone is built to verify the sensitivity of the receiver chip for different practical blocking scenarios

    Radio frequency front-end circuits for W-CDMA direct conversion receiver

    Get PDF
    Master'sMASTER OF ENGINEERIN
    corecore