21,146 research outputs found

    Octopus: A Heterogeneous In-network Computing Accelerator Enabling Deep Learning for network

    Full text link
    Deep learning (DL) for network models have achieved excellent performance in the field and are becoming a promising component in future intelligent network system. Programmable in-network computing device has great potential to deploy DL for network models, however, existing device cannot afford to run a DL model. The main challenges of data-plane supporting DL-based network models lie in computing power, task granularity, model generality and feature extracting. To address above problems, we propose Octopus: a heterogeneous in-network computing accelerator enabling DL for network models. A feature extractor is designed for fast and efficient feature extracting. Vector accelerator and systolic array work in a heterogeneous collaborative way, offering low-latency-highthroughput general computing ability for packet-and-flow-based tasks. Octopus also contains on-chip memory fabric for storage and connecting, and Risc-V core for global controlling. The proposed Octopus accelerator design is implemented on FPGA. Functionality and performance of Octopus are validated in several use-cases, achieving performance of 31Mpkt/s feature extracting, 207ns packet-based computing latency, and 90kflow/s flow-based computing throughput

    Toolflows for Mapping Convolutional Neural Networks on FPGAs: A Survey and Future Directions

    Get PDF
    In the past decade, Convolutional Neural Networks (CNNs) have demonstrated state-of-the-art performance in various Artificial Intelligence tasks. To accelerate the experimentation and development of CNNs, several software frameworks have been released, primarily targeting power-hungry CPUs and GPUs. In this context, reconfigurable hardware in the form of FPGAs constitutes a potential alternative platform that can be integrated in the existing deep learning ecosystem to provide a tunable balance between performance, power consumption and programmability. In this paper, a survey of the existing CNN-to-FPGA toolflows is presented, comprising a comparative study of their key characteristics which include the supported applications, architectural choices, design space exploration methods and achieved performance. Moreover, major challenges and objectives introduced by the latest trends in CNN algorithmic research are identified and presented. Finally, a uniform evaluation methodology is proposed, aiming at the comprehensive, complete and in-depth evaluation of CNN-to-FPGA toolflows.Comment: Accepted for publication at the ACM Computing Surveys (CSUR) journal, 201

    A scalable multi-core architecture with heterogeneous memory structures for Dynamic Neuromorphic Asynchronous Processors (DYNAPs)

    Full text link
    Neuromorphic computing systems comprise networks of neurons that use asynchronous events for both computation and communication. This type of representation offers several advantages in terms of bandwidth and power consumption in neuromorphic electronic systems. However, managing the traffic of asynchronous events in large scale systems is a daunting task, both in terms of circuit complexity and memory requirements. Here we present a novel routing methodology that employs both hierarchical and mesh routing strategies and combines heterogeneous memory structures for minimizing both memory requirements and latency, while maximizing programming flexibility to support a wide range of event-based neural network architectures, through parameter configuration. We validated the proposed scheme in a prototype multi-core neuromorphic processor chip that employs hybrid analog/digital circuits for emulating synapse and neuron dynamics together with asynchronous digital circuits for managing the address-event traffic. We present a theoretical analysis of the proposed connectivity scheme, describe the methods and circuits used to implement such scheme, and characterize the prototype chip. Finally, we demonstrate the use of the neuromorphic processor with a convolutional neural network for the real-time classification of visual symbols being flashed to a dynamic vision sensor (DVS) at high speed.Comment: 17 pages, 14 figure
    • …
    corecore