2,616 research outputs found

    A low-cost tracking system for running race applications based on bluetooth low energy technology

    Get PDF
    Timing points used in running races and other competition events are generally based on radio-frequency identification (RFID) technology. Athletes’ times are calculated via passive RFID tags and reader kits. Specifically, the reader infrastructure needed is complex and requires the deployment of a mat or ramps which hide the receiver antennae under them. Moreover, with the employed tags, it is not possible to transmit additional and dynamic information such as pulse or oximetry monitoring, alarms, etc. In this paper we present a system based on two low complex schemes allowed in Bluetooth Low Energy (BLE): the non-connectable undirected advertisement process and a modified version of scannable undirected advertisement process using the new capabilities present in Bluetooth 5. After fully describing the system architecture, which allows full real-time position monitoring of the runners using mobile phones on the organizer side and BLE sensors on the participants’ side, we derive the mobility patterns of runners and capacity requirements, which are determinant for evaluating the performance of the proposed system. They have been obtained from the analysis of the real data measured in the last Barcelona Marathon. By means of simulations, we demonstrate that, even under disadvantageous conditions (50% error ratio), both schemes perform reliably and are able to detect the 100% of the participants in all the cases. The cell coverage of the system needs to be adjusted when non-connectable process is considered. Nevertheless, through simulation and experimental, we show that the proposed scheme based on the new events available in Bluetooth 5 is clearly the best implementation alternative for all the cases, no matter the coverage area and the runner speed. The proposal widely exceeds the detection requirements of the real scenario, surpassing the measured peaks of 20 sensors per second incoming in the coverage area, moving at speeds that range from 1.5 m/s to 6.25 m/s. The designed real test-bed shows that the scheme is able to detect 72 sensors below 600 ms, fulfilling comfortably the requirements determined for the intended application. The main disadvantage of this system would be that the sensors are active, but we have proved that its consumption can be so low (9.5 ”A) that, with a typical button cell, the sensor battery life would be over 10,000 h of use.Peer ReviewedPostprint (published version

    A low-cost tracking system for running race applications based on bluetooth low energy technology

    Get PDF
    Timing points used in running races and other competition events are generally based on radio-frequency identification (RFID) technology. Athletes’ times are calculated via passive RFID tags and reader kits. Specifically, the reader infrastructure needed is complex and requires the deployment of a mat or ramps which hide the receiver antennae under them. Moreover, with the employed tags, it is not possible to transmit additional and dynamic information such as pulse or oximetry monitoring, alarms, etc. In this paper we present a system based on two low complex schemes allowed in Bluetooth Low Energy (BLE): the non-connectable undirected advertisement process and a modified version of scannable undirected advertisement process using the new capabilities present in Bluetooth 5. After fully describing the system architecture, which allows full real-time position monitoring of the runners using mobile phones on the organizer side and BLE sensors on the participants’ side, we derive the mobility patterns of runners and capacity requirements, which are determinant for evaluating the performance of the proposed system. They have been obtained from the analysis of the real data measured in the last Barcelona Marathon. By means of simulations, we demonstrate that, even under disadvantageous conditions (50% error ratio), both schemes perform reliably and are able to detect the 100% of the participants in all the cases. The cell coverage of the system needs to be adjusted when non-connectable process is considered. Nevertheless, through simulation and experimental, we show that the proposed scheme based on the new events available in Bluetooth 5 is clearly the best implementation alternative for all the cases, no matter the coverage area and the runner speed. The proposal widely exceeds the detection requirements of the real scenario, surpassing the measured peaks of 20 sensors per second incoming in the coverage area, moving at speeds that range from 1.5 m/s to 6.25 m/s. The designed real test-bed shows that the scheme is able to detect 72 sensors below 600 ms, fulfilling comfortably the requirements determined for the intended application. The main disadvantage of this system would be that the sensors are active, but we have proved that its consumption can be so low (9.5 ”A) that, with a typical button cell, the sensor battery life would be over 10, 000 h of use

    LoRa-Based System for Tracking Runners in Cross Country Races

    Full text link
    [EN] In recent years, there is an important trend in the organization of cross country races and popular races where hundred people usually participate. In these events, runners usually subject the body to extreme situations that can lead to various types of indisposition and they can also suffer falls. Currently, the electronic systems used in this type of racing refer only to whether a runner has passed through a checkpoint. However, it is necessary to implement systems that allow controlling the population of runners knowing their status all the time. For this reason, this paper proposes the design of a low-cost system for monitoring and controlling runners in this type of event. The system is formed by a network architecture in infrastructure mode based on Low-Power Wide-Area Network (LPWAN) technology. Each runner will carry an electronic device that will give their position and vital signs to be monitored. Likewise, it will incorporate an S.O.S. button that will allow sending a warning to the organization in order to help the person. All these data will be sent through the network to a database that will allow the organization and the public attending the race to check where the runner is and the history of their vital signs. This paper shows the proposed design to our system. Therefore, the paper will show the different practical experiments we have been carried out with the devices that have allowed proposing this design.This work has been partially supported by the Ministerio de Ciencia, Innovación y Universidades through the Ayudas para la adquisición de equipamiento científico-técnico, Subprograma estatal de infraestructuras de investigación y equipamiento científico-técnico (plan Estatal I+D+i 2017-2020) (project EQC2018-004988-P).Sendra, S.; Romero-Díaz, P.; García-Navas, JL.; Lloret, J. (2019). LoRa-Based System for Tracking Runners in Cross Country Races. MDPI. 1-6. https://doi.org/10.3390/ecsa-6-066291

    Design Experiences on Single and Multi Radio Systems in Wireless Embedded Platforms

    Get PDF
    The progress of radio technology has made several flavors of radio available on the market.Wireless sensor network platform designers have used these radios to build a variety of platforms. Withnew applications and different types of radios on wireless sensing nodes, it is often hard to interconnectdifferent types of networks. Hence, often additional radios have to be integrated onto existingplatforms or new platforms have to be built. Additionally, the energy consumption of these nodes have to be optimized to meetlifetime requirements of years without recharging.In this thesis, we address two issues of single and multi radio platform designfor wireless sensor network applications - engineering issues and energy optimization.We present a set of guiding principles from our design experiences while building 3 real life applications,namely asset tracking, burglar tracking and finally in-situ psychophysiological stress monitoring of human subjects in behavioral studies.In the asset tracking application, we present our design of a tag node that can be hidden inside valuable personal assets such asprinters or sofas in a home. If these items are stolen, a city wide anchor node infrastructure networkwould track them throughout the city. We also present our design for the anchor node.In the burglar tracking application, we present the design of tag nodes and the issueswe faced while integrating it with a GSM radio. Finally, we discuss our experiencesin designing a bridge node, that connects body worn physiological sensorsto a Bluetooth enabled mobile smartphone. We present the software framework that acts as middleware toconnect to the bridge, parse the sensor data, and send it to higher layers of the softwareframework.We describe 2 energy optimization schemes that are used in the Asset Tracking and the Burglar Tracking applications, that enhance the lifetime of the individual applications manifold.In the asset tracking application,we design a grouping scheme that helps increase reliability of detection of the tag nodes at theanchor nodes while reducing the energy consumption of the group of tag nodes travelling together.We achieve an increase of 5 times improvement in lifetime of the entire group. In the Burglar Tracking application, weuse sensing to determine when to turn the GSM radio on and transmit data by differentiatingturns and lane changes. This helps us reduce the number of times the GSM radio is woken up, thereby increasing thelifetime of the tag node while it is being tracked. This adds 8 minutes of trackablelifetime to the burglar tracking tag node. We conclude this thesis by observing the futuretrends of platform design and radio evolution

    A wearable device for sport performance analysis and monitoring

    Get PDF
    In this paper the use of a wearable device is considered in order to evaluate the performance of an athlete during her/his sport activities. The preliminary step consists of recording the motion variables at a sufficiently high sampling rate throughout the experimental campaign. The collected data are then elaborated by a PC-based application to identify the system dynamics and derive some synthetic performance indicators, by taking into account also the experience of the sport professionals. The extraction of the indicators is based on basic signal processing that can be implemented in algorithms run directly on the microcontroller unit (MCU) of the device. The key indicators values can be sent to other electronic devices by using one of the available wireless network connections at a reduced transmission rate. Some experimental data are also reported to illustrate the effectiveness of the approach

    Emotions in context: examining pervasive affective sensing systems, applications, and analyses

    Get PDF
    Pervasive sensing has opened up new opportunities for measuring our feelings and understanding our behavior by monitoring our affective states while mobile. This review paper surveys pervasive affect sensing by examining and considering three major elements of affective pervasive systems, namely; “sensing”, “analysis”, and “application”. Sensing investigates the different sensing modalities that are used in existing real-time affective applications, Analysis explores different approaches to emotion recognition and visualization based on different types of collected data, and Application investigates different leading areas of affective applications. For each of the three aspects, the paper includes an extensive survey of the literature and finally outlines some of challenges and future research opportunities of affective sensing in the context of pervasive computing

    Edge Artificial Intelligence for Real-Time Target Monitoring

    Get PDF
    The key enabling technology for the exponentially growing cellular communications sector is location-based services. The need for location-aware services has increased along with the number of wireless and mobile devices. Estimation problems, and particularly parameter estimation, have drawn a lot of interest because of its relevance and engineers' ongoing need for higher performance. As applications expanded, a lot of interest was generated in the accurate assessment of temporal and spatial properties. In the thesis, two different approaches to subject monitoring are thoroughly addressed. For military applications, medical tracking, industrial workers, and providing location-based services to the mobile user community, which is always growing, this kind of activity is crucial. In-depth consideration is given to the viability of applying the Angle of Arrival (AoA) and Receiver Signal Strength Indication (RSSI) localization algorithms in real-world situations. We presented two prospective systems, discussed them, and presented specific assessments and tests. These systems were put to the test in diverse contexts (e.g., indoor, outdoor, in water...). The findings showed the localization capability, but because of the low-cost antenna we employed, this method is only practical up to a distance of roughly 150 meters. Consequently, depending on the use-case, this method may or may not be advantageous. An estimation algorithm that enhances the performance of the AoA technique was implemented on an edge device. Another approach was also considered. Radar sensors have shown to be durable in inclement weather and bad lighting conditions. Frequency Modulated Continuous Wave (FMCW) radars are the most frequently employed among the several sorts of radar technologies for these kinds of applications. Actually, this is because they are low-cost and can simultaneously provide range and Doppler data. In comparison to pulse and Ultra Wide Band (UWB) radar sensors, they also need a lower sample rate and a lower peak to average ratio. The system employs a cutting-edge surveillance method based on widely available FMCW radar technology. The data processing approach is built on an ad hoc-chain of different blocks that transforms data, extract features, and make a classification decision before cancelling clutters and leakage using a frame subtraction technique, applying DL algorithms to Range-Doppler (RD) maps, and adding a peak to cluster assignment step before tracking targets. In conclusion, the FMCW radar and DL technique for the RD maps performed well together for indoor use-cases. The aforementioned tests used an edge device and Infineon Technologies' Position2Go FMCW radar tool-set

    Harnessing single board computers for military data analytics

    Get PDF
    Executive summary: This chapter covers the use of Single Board Computers (SBCs) to expedite onsite data analytics for a variety of military applications. Onsite data summarization and analytics is increasingly critical for command, control, and intelligence (C2I) operations, as excessive power consumption and communication latency can restrict the efficacy of down-range operations. SBCs offer power-efficient, inexpensive data-processing capabilities while maintaining a small form factor. We discuss the use of SBCs in a variety of domains, including wireless sensor networks, unmanned vehicles, and cluster computing. We conclude with a discussion of existing challenges and opportunities for future use.https://digitalcommons.usmalibrary.org/books/1010/thumbnail.jp
    • 

    corecore